廣西南寧外國語學校2011-2012學年高一上學期數學章節(jié)測試題-數列.doc
《廣西南寧外國語學校2011-2012學年高一上學期數學章節(jié)測試題-數列.doc》由會員分享,可在線閱讀,更多相關《廣西南寧外國語學校2011-2012學年高一上學期數學章節(jié)測試題-數列.doc(8頁珍藏版)》請在裝配圖網上搜索。
高一(上)數學章節(jié)測試題——數列 (考試時間120分鐘,滿分150分)班別_______姓名________學號________分數_______ 一、選擇題(本大題共12小題,每小題5分,共60分. 以下給出的四個備選答案中,只有一個正確) 1. (09安徽)已知為等差數列,,則等于( ?。? A. B. 1 C. 3 D.7 2. (08廣東)記等差數列的前項和為,若,則該數列的公差( ) A.2 B.3 C.6 D.7 3. (10全國Ⅱ)如果等差數列中,++=12,那么 ++…+=( ?。? A. 14 B. 21 C. 28 D.35 4. (08福建)設是公比為正數的等比數列,若,則數列前7項的和為( ) A.63 B.64 C.127 D.128 5. (10全國Ⅰ)已知各項均為正數的等比數列,=5,=10,則=( ?。? A. B. 7 C. 6 D. 6. (09寧夏)等差數列的前n項和為,已知,,則( ) A. 38 B. 20 C. 10 D. 9 7. (08北京)已知等差數列中,.若,則數列的前5項和等于( ) A.30 B. 45 C.90 D.186 8.(09重慶)設是公差不為0的等差數列,且成等比數列,則的前項和=( ) A. B. C. D. 9.(09寧夏)設等比數列的前n 項和為,若=3 ,則 =( ) A. 2 B. C. D.3 10.(09安徽)已知為等差數列,++=105,=99.以表示的前項和,則使得達到最大值的是( ) A.21 B.20 C.19 D. 18 11.(11江西)已知數列的前n項和滿足,那么( ) A.1 B.9 C.10 D.55 12.(09廣東)已知等比數列滿足,且,則當時,( ) w.w.w.k.s.5.u.c.o.m A. B. C. D. 二、填空題(本大題共4小題,每小題5分,共20分.把答案填在答題卡中對應題號后的橫線上) 13. (09全國Ⅰ)設等差數列的前項和為.若,則_______________. 14.(10福建)在等比數列中,若公比q=4,且前3項之和等于21,則該數列的通項公式 _____________. 15. (08四川)設數列中,,則通項_____________. 16. (07重慶) 設為公比的等比數列,若和是方程的兩根,則 _____________. 三、解答題(本大題共6小題,共70分. 解答應寫出文字說明,證明過程或演算步驟) 17.(本題滿分10分,06全國Ⅰ17) 已知為等比數列,,求的通項公式. 18. (本題滿分12分,10北京16) 已知為等差數列,且,. (Ⅰ)求的通項公式; (Ⅱ)若等比數列滿足,,求的前n項和公式. 19. (本題滿分12分,10山東18) 已知等差數列滿足,的前項和為. (Ⅰ)求及; (Ⅱ)令,求數列的前項和. 20.(本題滿分12分,06遼寧20) 已知等差數列的前項和為,. (Ⅰ)求的值; (Ⅱ)若與的等差中項為,滿足,求數列的前項和. 21.(本題滿分12分,11湖北17) 成等差數列的三個正數之和等于15,并且這三個數分別加上2,5,13后成為等比數列中的. (Ⅰ)求數列的通項公式;(Ⅱ)數列的前項和為,求證:數列是等比數列. 22.(本題滿分12分, 09山東20)等比數列的前n項和為,已知對任意的,點,均在函數且均為常數)的圖像上. (Ⅰ)求r的值; (Ⅱ)當時,記求數列的前項和. 參考答案: 一、選擇題答題卡: 題號 1 2 3 4 5 6 7 8 9 10 11 12 答案 B B C C A C C A B B A C 二、填空題 13. ___24____. 14. . 15. . 16.______18______. 三、解答題 17.解:設等比數列的公比為q,則 即 解之得或 當時,; 當時,. 18.解:(Ⅰ)設等差數列的公差. 因為,所以 所以. (Ⅱ)設等比數列的公比為. 因為,所以.即=3. 所以的前項和公式為. 19. 解:(Ⅰ)設等差數列的首項為,公差為d. 由解得 , (Ⅱ),,. = = =. 所以數列的前項和= . 20. 解:(Ⅰ), , , 由得 (Ⅱ)根據題意所以與的等差中項為. 由(Ⅰ)知 從而 故 因此,數列是等比數列,首項,公比 所以數列的前項和 21. 解:(Ⅰ)設成等差數列的三個正數分別為, 依題意,得 所以中的依次為 依題意,有(舍去) 故的,公比. 由 所以是以為首項,2為以比的等比數列,其通項公式為. (Ⅱ)數列的前項和,即 所以 因此為首項,公比為2的等比數列. 22.解: (Ⅰ)因為對任意的,點,均在函數且均為常數)的圖像上.所以得,,, , 為等比數列,.從而 解得. (Ⅱ)當時,由(Ⅰ)知,. 當時, 滿足上式,所以其通項公式為. 所以 ,………………(1) ……(2) ,得: . 所以.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 廣西南寧 外國語學校 2011 2012 年高 上學 期數 章節(jié) 測試 數列
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://zhongcaozhi.com.cn/p-9255729.html