以上為資料預(yù)覽概圖,下載文件后為壓縮包資料文件?!厩逦?,無(wú)水印,可編輯】dwg后綴為cad圖,doc后綴為word格式,需要請(qǐng)自助下載即可,有疑問(wèn)可以咨詢(xún)QQ 197216396 或 11970985
附件1:外文資料翻譯譯文
微型模具成型的熱量和擠壓控制
在這篇文章中,我們?yōu)榱擞行У貜?fù)制出該微型模具產(chǎn)品的微小結(jié)構(gòu),將一個(gè)擠壓機(jī)器和一個(gè)小核心傳感器組合起來(lái),構(gòu)建一個(gè)注射模具的擠壓系統(tǒng)。在一些重要的部位,由一個(gè)壓力裝置,它作為原動(dòng)力,驅(qū)動(dòng)中心模具工作。舉例說(shuō)吧,在注射以后,模腔中的壓力會(huì)從二十兆帕上升到三十四兆帕。那些小小的感應(yīng)器形成感受到壓力,那些周?chē)难b置和熱敏傳感器,排列在洞腔的同圍。我們可以根據(jù)這些信號(hào)推測(cè)里面狀況朝著有利的方向發(fā)展。為了評(píng)估該注射系統(tǒng),我們做了一個(gè)厚度為1lm角度為140℃ 三角凹朝槽 來(lái)進(jìn)行工作。
說(shuō)明
大部分的醫(yī)療信息設(shè)備都有一個(gè)基礎(chǔ)工作部分,另外還有一些輔助部件來(lái)完成某種特定的功能。模具成型技術(shù) 在現(xiàn)實(shí)中廣泛應(yīng)用,而且在大批量生產(chǎn)中多有應(yīng)用,這篇文章即是研究成型過(guò)程在傳統(tǒng)的成型壓力系統(tǒng)中,其為系統(tǒng)提供很大的壓力差,這種特點(diǎn)為模具成型過(guò)程提供了很好的動(dòng)力源.然而,傳統(tǒng)的成型過(guò)程在注射成型的過(guò)程中,特別是在微型模具的成型過(guò)程中,有兩個(gè)很明顯的問(wèn)題.首先,在用單模腔成型微小結(jié)構(gòu)的模具時(shí),不同的溫度和硬度會(huì)引起不一致的成型壓力.一般來(lái)說(shuō),模腔中心的溫度越高,中心周?chē)臏囟纫矔?huì)越高.其次,即使通過(guò)冷卻和控制壓力的方法來(lái)展平那些不平的區(qū)域,但是通過(guò)檢測(cè)發(fā)現(xiàn),熱流量和壓力仍是高于成型微型模具工作時(shí)所規(guī)定的壓力,而且腔內(nèi)的這種情況很不好控制,這樣以來(lái)就只好通來(lái)偵測(cè)熱流面不是溫度來(lái)控制型腔中各種成型條件.
這篇文章的作者,也就是該機(jī)器的設(shè)計(jì)者,他通過(guò)在模具重要部位安放一個(gè)叫做模具核心擠壓機(jī)的部件來(lái)及時(shí)了解并控制模腔內(nèi)成型的具體情況。這個(gè)部件配備有特殊裝置來(lái)控制模腔內(nèi)的壓力、溫度,并反饋回到顯示裝置上。這篇文章就向我們?cè)敿?xì)地闡述了這種機(jī)器的模型。
模具成型的壓力系統(tǒng)設(shè)計(jì)
如圖1所示,該結(jié)構(gòu)為我們常用的模具結(jié)構(gòu)圖。首先,我們描述一下裝備有piezo設(shè)備的模具成型壓力機(jī)。我們用的pie20設(shè)備有一個(gè)最大厚度為13LM的裝置,而且可以產(chǎn)生一個(gè)最大值為6KN的壓力。因此,該注射壓力系統(tǒng)所能產(chǎn)生的壓力在0~6KN之間,注射機(jī)的壓力系統(tǒng)有一個(gè)壓力設(shè)備,該裝置有一個(gè)特置的中心軸,并與一個(gè)傳感反饋裝置連在一塊。這個(gè)壓力裝置是圓柱形的,直徑為25mm,高度為54mm,它的溫度約在20℃和120℃之間。壓力傳動(dòng)裝置的設(shè)計(jì)是對(duì)稱(chēng)的,它把動(dòng)力和運(yùn)動(dòng)從壓力裝置上以一定的規(guī)律和方式傳出去,這個(gè)圓柱體的傳動(dòng)裝置向一個(gè)方向上不停地進(jìn)行著傳遞工作,并由一個(gè)平面的輔助裝置保證其只能在平面內(nèi)作旋轉(zhuǎn)運(yùn)動(dòng)。
為了研究之便,我們特地用一個(gè)很小的傳感器,使位移,壓力、傳感器、熱量傳感器很好地相互協(xié)調(diào)起來(lái)協(xié)同工作,當(dāng)注射機(jī)的注射孔開(kāi)始有位移并要接觸到模腔時(shí),位移傳感器裝置就會(huì)測(cè)出其位移,并作出下一步的控制動(dòng)作。該位移傳感器是非接觸式傳感器,其最大是量程為500lm ,誤差可以控制在0.2lm以下。
我們把一個(gè)核心模型放在模腔的中央,其結(jié)構(gòu)是一個(gè)三角形的凹槽,以深度1lm順次排列。核心表面有32768個(gè)三角形的凹槽組成,凹槽相鄰的角度為140o ,距離為1μm完成加工的產(chǎn)品組成一個(gè)直徑為12mm厚度為1mm的盤(pán)狀物。由是由在鋼里面加入鎳和磷元素制成的合金做的。有很好的硬度和耐磨性。三角槽的切制是由精度非常高的NC機(jī)切制而成的,有著異常高的精確度。
有二組深度為12lm的廢氣排放口,依次排列在圓洞的周?chē)?。用一個(gè)真空泵抽出由于樹(shù)脂的分解而產(chǎn)生的廢氣物。為保證精細(xì)模具的硬度,統(tǒng)一冷卻那些盤(pán)狀產(chǎn)品。我對(duì)使冷卻水做曲線的循環(huán)運(yùn)動(dòng)。注射機(jī)依靠一個(gè)伺服馬達(dá)系統(tǒng),使其可以具備最高達(dá)150KN的夾緊力。
評(píng)估微型注射系統(tǒng)
以下是成型時(shí)的條件:材料:聚苯乙烯;注射溫度:190℃;成型設(shè)備溫度:80℃;注射速度:10mm/s;注射壓力:34mpa;夾緊力:150KN。在這些條件下,我們分別對(duì)如下情景作了比較分析。第一種情況是在約1000Vr 電壓下推動(dòng)注射壓力機(jī)工作,第二種是沒(méi)有電壓作用。圖表3和4顯示的是模具里邊傳感器的測(cè)量結(jié)果。注射壓力的測(cè)量由位于注射壓力機(jī)后面的壓力計(jì)來(lái)測(cè)量,并以數(shù)字表格形式在輸出裝置上顯示。
第三組表格顯示了成型一個(gè)周期的數(shù)據(jù)。首先,在第5.16秒,注射動(dòng)作開(kāi)始注射,注射壓力也隨之上升,從第5.6s開(kāi)始注射壓力在2秒之內(nèi)迅速升至34MPA,模腔內(nèi)的應(yīng)力實(shí)行如圖所標(biāo)的傳感器檢測(cè)表明,也隨著增加,只不過(guò)有大約0.35秒的延遲,最終可達(dá)到20MPA,約是注射壓力的59%。在注射壓力保持不變的那一階段,模腔內(nèi)的應(yīng)力迅速下降到零。這充分證明,盡管存在著由注射機(jī)提供注射壓力,但其中一部分由于模腔內(nèi)的摩擦力的存在而被抵消,熔料在模腔內(nèi)凝固的過(guò)程中,熔料因漸成為固體而其余部分也隨之降低為零。在此過(guò)程中,中心位移也經(jīng)歷了與模腔內(nèi)壓力變化規(guī)律相似的變化。這說(shuō)明注射中心也受到了反作用力,在經(jīng)歷大約14S的冷卻過(guò)程后模具被打開(kāi)了。
比較低的表格表明了表面溫度和熱量擴(kuò)散的過(guò)程。其中比較平直的那一段曲線顯示的是保壓階段或者說(shuō)是壓力持續(xù)過(guò)程。圖表顯示的是表面溫度連續(xù)上升的過(guò)程,此時(shí),熔料經(jīng)澆口源源不斷地流經(jīng)流道,最終達(dá)到成型模腔。在注射完成后,溫度迅速上升,而后隨即下降(在冷卻作用下)特別是澆口附近的熱量散的比較快,溫度下降也比較明顯。
在圖表4中,在第5.6s的時(shí)候,壓力裝置得到約1000V的電壓,由于電壓作用,模腔內(nèi)的壓力升至34MPA,中心的溫度和壓力也隨之上升。切斷電壓后,中心也恢復(fù)到原始狀態(tài),但我們無(wú)法看到這一過(guò)程。
下面,我們對(duì)是否微型注射壓力機(jī)時(shí)產(chǎn)品的表面特征作一比較。圖表5、6顯示的是SEM照片而AFM的測(cè)量結(jié)果。從圖片來(lái)看,三角形凹槽的表面粗糙度和均勻程度在這兩種情況下并無(wú)明顯區(qū)別。原因就是因與注射時(shí)的速度與模具微小結(jié)構(gòu)的質(zhì)量有關(guān),另外三角形凹槽的深度和排列密度也是其原因之一。
附件2:外文原文
Injection molding for microstructures controlling mold-core extrusion and cavity heat-flux
Abstract In this work we constructed an injection press molding system with a mold-core extrusion mechanism and a small sensor assembly for effectively duplicating microstructures to the mold products. The mold-core extrusion mechanism is driven by a piezo element to apply force on important area with microstructures. For example, after injection it increases the cavity pressure from 20 to 34 MPa. Small sensors consist of the pressure, displacement, and heat flux sensor assemblies,arranged around the small cavity. The signals showed us the physical phenomena inside the mold and may be further used as control signal. In order to evaluate this injection press molding system, we formed micro triangular grooves of pitch 1 lm and angle 140o. The mold-core extrusion gave better diffraction intensity by several percents.
1
Introduction
Many information and medical equipment contain functional parts with microstructures in the order of 1 lm and overall size of several millimeters. Molding is a mass production method widely used in duplicating three dimensional forms of these parts [1–4]. This paper reports our study on one of the molding processes, namely, the injection press molding process.
In contrast to regular injection molding process that injects molten resin at high pressure into the cavity for simultaneous filling and forming, injection press molding process separates the time of the two processes. Injection press molding process injects molten resin into a mold cavity at low pressure to keep the flow resistance small,and once the cavity is filled, applies large clamping force on molds to form microstructures. Injection press molding has superb transforming capability used for example, in forming optical disks and LCD light guiding plates.
Conventional injection press molding applies large clamping force on molds for forming after the filling process. However, conventional injection press molding process has two problems for forming micro parts described above. First, in forming multiple micro parts with a single set of molds, the temperature and rigidity distributions are not uniform causing difference in forming pressure [5, 6]. Generally, the temperature is higher around the mold center and the pressing force is higher around the perimeter. Secondly, even if one tries to flatten the uneven distribution with cooling or pressure control, sensors to monitor the heat flux or pressure are larger than the micro parts and cannot find these conditions within the cavity.Note that measuring heat flux instead of temperature allows monitoring resin solidification in the cavity.
The authors of this paper devised mechanisms to (1) individually press each important micro structure area (we call this area the ‘‘core’’) with a mold-core extrusion mechanism equipped with a small piezo element and (2) control pressure temperature, and especially the cavity heat flux for each core by arranging a set of sensors around each core and feeding back the sensor signals to the above piezo element. This paper reports our prototype of these mechanisms.
2
Designing the injection press molding system
Figure 1 shows the mold we used. First we describe the mold-core extrusion mechanism design equipped with a piezo element. The piezo element used (KISTLER,Z17294X2) has a maximum free displacement of 13 lm and produces a maximum force of 6 kN with no displacement,thus the pressing force varies between 0 and 6 kN depending on the piezo element extension. The piezo element has a single axis force sensor (KISTLER, 9134A) integrated in it for pressing force feedback control. The piezo element unit size is 25 mm in diameter, 54 mm long and its temperature
Fig. 1. Test mold range is )20 to 120oC. The
symmetric design of the force transferring structure uniformly transfers the pressing force from the piezo element. This cylindrical force transfer mechanism moves in one direction and a planar surface keeps the shaft from rotating.
A small sensor assembly was developed for our study in this paper. Displacement, pressure, and heat flux sensors compose the assembly. The displacement sensor measures the displacement at the mold-core extrusion mechanism where it presses the mold-core, and the displacement in the parting direction at the parting line.
The displacement sensor is an eddy-current type noncontact displacement sensor (SINKAWA Electric, VC-202N) with range of 500 lm and resolution of 0.2 lm. The above 1 axis force sensor served as the pressure sensor to measure the cavity internal pressure.
The heat flux sensor measured the cavity surface temperature and the heat flux. A pair of thermocouples embedded at depths 0.3 and 0.6 mm enabled these measurements with the principle of inverse heat conduction.We mounted the diameter 3.5 mm heat flux sensors on the gate, cavity and sprue lock pin (Fig. 2).
We placed one mold-core at the mold center. The microstructure was triangular grooves arranged with pitch 1 lm. The core surface had 32,768 triangular grooves with 140_ angle that are 0.2 mm long on the
perimeter of a 10.5 mm circle.
Fig. 2. Cavity details and mold-core The finished product formed into
a 1 mm thick disk with diameter 12 mm. The core was made of steel (UDDEHOLM, STAVAX, 52 Rockwell hardness), with Ni-P plating. We cut the triangular grooves with an ultra precision NC machine (FANUC ROBOnano Ui).
Two 12 lm deep air vent grooves were placed on the perimeter of the cavities. A vacuum pump pumped out residual air and gas from molten resin. To provide rigidity similar to a regular mold, we kept the entire 80 kgf mold size the same. For uniformly cooling the disk shaped product, we ran cooling water in a circular path. The injection molding machine (FANUC, ROBOSHOT a-15) has a servo motor type drive with maximum clamping force of 150 kN.
3
Evaluating the injection press molding system
Here are the molding conditions: Resin: Polystyrene, Resin temperature at injection: 190 oC, Mold set temperature:80 oC, Injection speed: 10 mm/s, Holding pressure:34 MPa, and Clamping force: 150 kN. Under these conditions,we compared the case with a constant voltage of 1000 V applied to push the mold-core extrusion mechanism,and the case without pushing. Figures 3 and 4 show the measurements from the sensors inside the mold. The injection force measured with a load cell placed behind the injection molding machine screw derived the injection pressure in the figure.
Fig. 3. Measurements Fig. 4. Measurements
of sensors (without) of sensors (with)
Upper figures of Fig. 3 show the molding cycle. First at 5.15 s, the injection starts and the injection pressure suddenly rises. At 5.6 s, the injection pressure is held at 34 MPa for 2 s. The cavity pressure, measured by the 1 axis force sensor, increase with a 0.35 s delay, to reach only 20 MPa, which is 59% of the injection pressure. The cavity pressure quickly went down to about zero during the injection pressure holding period. This shows that despite the pushing force at the source of the injection molding machine, friction reduces pressure which is dropped at cavity. Also, when the resin solidified in the cavity, it parted from the mold to drop the pressure to zero. The core displacement shows a transition similar to the cavity pressure indicating that it was pressed back by the resin. After further cooling to 14 s, the mold was opened.
Lower figures of Fig. 3 show the surface temperature and heat flux transitions. The horizontal axes are magni-fied in the lower figures around the pressure holding period.The figure shows the sequential surface temperature rise at the lock pin, gate, and cavity as resin passed over them. The heat flux maximized immediately after injection and gradually decreased. Especially at the gate, the heat flux went down to about zero during pressure holding.
In Fig. 4, a voltage of 1000 V was applied to the piezo element for 2 s starting at 5.6 s. The voltage raised the cavity pressure to 34 MPa. The core gradually advanced with drop in cavity pressure from the position pressed in by the resin to eventually reach 9 lm ahead of its original position. Cutting the voltage retracted the core to its original position. But, we were not able to observe change in surface temperature and heat flux due to change in heat transfer from applying voltage.
Next we compare form features on the product with and without the mold-core extrusion. Figures 5 and 6 show the SEM photographs and the AFM measurement results. The photographs reveal that the triangular grooves had a uniform pitch with smooth surface regardless of mold-core extrusion, and good form transfer to the products. The reasons are smooth flow of polystyrene and the small aspect ratio of the groove depth and pitch.
畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告
設(shè)計(jì)(論文)名稱(chēng)
塑料儀表蓋注塑模具設(shè)計(jì)
設(shè)計(jì)(論文)類(lèi)型
B-應(yīng)用研究
指導(dǎo)教師
學(xué)生
姓名
學(xué)號(hào)
系、專(zhuān)業(yè)、班級(jí)
一、選題依據(jù):(簡(jiǎn)述研究現(xiàn)狀或生產(chǎn)需求情況,說(shuō)明該設(shè)計(jì)(論文)目的意義。)
研究現(xiàn)狀:我國(guó)塑料模工業(yè)從起步到現(xiàn)在,歷經(jīng)半個(gè)多世紀(jì),有了很大發(fā)展,模具水平有了較大提高。在大型模具方面已能生產(chǎn)48英寸大屏幕彩電塑殼注射模具、6.5Kg 大容量洗衣機(jī)全套塑料模具以及汽車(chē)保險(xiǎn)杠和整體儀表板等塑料模具,精密塑料模具方面,已能生產(chǎn)照相機(jī)塑料件模具、多型腔小模數(shù)齒輪模具及塑封模具。注塑模型腔制造精度可達(dá)0.02mm~0.05mm,表面粗糙度Ra0.2μm,模具質(zhì)量、壽命明顯提高了,非淬火鋼模壽命可達(dá)10~30萬(wàn)次,淬火鋼模達(dá)50~100萬(wàn)次,交貨期較以前縮短,但和國(guó)外相比仍有較大差距。
在電子、汽車(chē)、電機(jī)、電器、儀器、儀表、家電和通信等產(chǎn)品中,60%~80%的零部件都要依靠模具成形。用模具生產(chǎn)制件所具備的高精度、高復(fù)雜程度、高一致性、高生產(chǎn)率和低消耗,是其他加工制造方法所不能比擬的。模具又是“效益放大器”,用模具生產(chǎn)的最終產(chǎn)品的價(jià)值,往往是模具自身價(jià)值的幾十倍、上百倍。模具生產(chǎn)技術(shù)水平的高低,已成為衡量一個(gè)國(guó)家產(chǎn)品制造水平高低的重要標(biāo)志,因?yàn)槟>咴诤艽蟪潭壬蠜Q定著產(chǎn)品的質(zhì)量、效益和新產(chǎn)品的開(kāi)發(fā)能力。
設(shè)計(jì)目的:通過(guò)本次設(shè)計(jì)讓我掌握自動(dòng)卸螺紋機(jī)構(gòu)的設(shè)計(jì),對(duì)CAD,CAE等一系列軟件的應(yīng)用熟練,讓我們能更快適應(yīng)生產(chǎn)工作。培養(yǎng)自己綜合運(yùn)用所學(xué)基礎(chǔ)和專(zhuān)業(yè)基本理論、基本方法分析和解決測(cè)量與控制及其它相關(guān)工程實(shí)際問(wèn)題的能力,在獨(dú)立思考、獨(dú)立工作能力方面獲得培養(yǎng)和提高。
設(shè)計(jì)意義:隨著塑料制品在機(jī)械、電子、交通、國(guó)防、建筑、農(nóng)業(yè)、等各個(gè)行業(yè)廣泛應(yīng)用,對(duì)塑料模具的需求日益增加,塑料模在國(guó)民經(jīng)濟(jì)中的重要性也日益突出。模具作為一種高附加值和技術(shù)密集型產(chǎn)品,其技術(shù)水平的高低已經(jīng) 一個(gè)國(guó)家制造業(yè)水平的重要標(biāo)志之一。
二、設(shè)計(jì)(論文研究)思路及工作方法
1. 接受任務(wù)書(shū)及收集資料,閱讀文獻(xiàn);
2. 書(shū)寫(xiě)開(kāi)題報(bào)告;
3. 工藝方案設(shè)計(jì)分析;
4. 成型設(shè)備的選用及參數(shù)校核;
5. 澆注系統(tǒng)設(shè)計(jì);
6. 成型零件系統(tǒng)設(shè)計(jì);
7. 脫模機(jī)構(gòu)設(shè)計(jì);
8. 模溫調(diào)節(jié)與冷卻系統(tǒng)設(shè)計(jì);
9. 總體結(jié)構(gòu)設(shè)計(jì)及總裝圖繪制;
10. 重要零部件圖紙?jiān)O(shè)計(jì);
11. 編寫(xiě)畢業(yè)設(shè)計(jì)說(shuō)明書(shū)。
三、設(shè)計(jì)(論文研究)任務(wù)完成的階段內(nèi)容及時(shí)間安排。
第一階段 3月 5 日至3月25日,資料收集,閱讀文獻(xiàn),完成開(kāi)題報(bào)告
第二階段 3月26日至4月26日,工藝方案確定、注塑工藝CAE分析、模具結(jié)構(gòu)設(shè)計(jì)和計(jì)算
第三階段 4月26日至5月26日,完成所有圖紙的繪制
第四階段 5月26日至6月5日,完成設(shè)計(jì)說(shuō)明書(shū)的撰寫(xiě)
第五階段 6月5日至6月24日,完成圖紙和說(shuō)明書(shū)的修改,答辯的準(zhǔn)備和畢業(yè)答辯
四.課題參考文獻(xiàn)資料:
(1)《塑料模具設(shè)計(jì)手冊(cè)》,塑料模具設(shè)計(jì)手冊(cè)編委會(huì),機(jī)械工業(yè)出版社,2001。
(2)《塑料模具技術(shù)手冊(cè)》,塑料模具技術(shù)手冊(cè)編委會(huì),機(jī)械工業(yè)出版社,2001。
(3)《實(shí)用塑料注射模具設(shè)計(jì)與制造》,陳萬(wàn)林等編著,機(jī)械工業(yè)出版社,2001。
(4)《沖壓與塑料成型設(shè)備》,范有成主編,高等教育出版社,2000。
(5)《塑料模具設(shè)計(jì)》,高濟(jì)主編,機(jī)械工業(yè)出版社,2003。
(6)《機(jī)械設(shè)計(jì)手冊(cè)軟件版》,機(jī)械設(shè)計(jì)手冊(cè)編委會(huì),機(jī)械工業(yè)出版社,2005。
指導(dǎo)教師意見(jiàn)
指導(dǎo)教師簽字: 年 月 日
教研室畢業(yè)設(shè)計(jì)(論文)工作組審核意見(jiàn)
難度
分量
綜合訓(xùn)練程度
教研室主任: 年 月 日
設(shè)計(jì)(論文)類(lèi)型:A—理論研究;B—應(yīng)用研究;C—軟件設(shè)計(jì);D-其它等。
文獻(xiàn)綜述:
塑料儀表蓋注塑模具設(shè)計(jì)
1 緒 論
模具產(chǎn)品是工業(yè)產(chǎn)品制造的基礎(chǔ),模具技術(shù)已成為衡量一個(gè)國(guó)家產(chǎn)品制造水平的重要標(biāo)志之一。隨著科學(xué)技術(shù)的不斷發(fā)展和社會(huì)的高速發(fā)展,產(chǎn)品更新?lián)Q代越來(lái)越快,注塑模具設(shè)計(jì)也隨著科技發(fā)展明顯縮短生產(chǎn)周期,用一系列軟件對(duì)注塑模具進(jìn)行分析設(shè)計(jì),大大縮短了生產(chǎn)周期。
本設(shè)計(jì)在注塑模具成型工藝飛速發(fā)展的時(shí)代條件下,用UG4.0軟件進(jìn)行建模,用CAD軟件進(jìn)行工程圖的繪制,多種軟件交替進(jìn)行,為注塑模具設(shè)計(jì)帶來(lái)了極大方便,同時(shí)使設(shè)計(jì)更為合理精確,更是大大縮短了注塑模具的設(shè)計(jì)周期,同時(shí)節(jié)約了成本。
本說(shuō)明書(shū)為機(jī)械塑料注射模具設(shè)計(jì)說(shuō)明書(shū),是根據(jù)塑料模具手冊(cè)上的設(shè)計(jì)過(guò)程及相關(guān)工藝編寫(xiě)的。本說(shuō)明書(shū)的內(nèi)容包括:目錄、設(shè)計(jì)指導(dǎo)書(shū)、設(shè)計(jì)說(shuō)明書(shū)、參考文獻(xiàn)等。 編寫(xiě)本說(shuō)明書(shū)時(shí),力求符合設(shè)計(jì)步驟,詳細(xì)說(shuō)明了塑料注射模具設(shè)計(jì)方法,以及各種參數(shù)的具體計(jì)算方法,如塑件的成型工藝、塑料脫模機(jī)構(gòu)的設(shè)計(jì)。
大學(xué)幾年的學(xué)習(xí)即將結(jié)束,設(shè)計(jì)是其中最后一個(gè)環(huán)節(jié),是對(duì)以前所學(xué)的知識(shí)及所掌握的技能的綜合運(yùn)用和檢驗(yàn)。隨著我國(guó)經(jīng)濟(jì)的迅速發(fā)展,采用模具的生產(chǎn)技術(shù)得到愈來(lái)愈廣泛的應(yīng)用。在完成大學(xué)四年的課程學(xué)習(xí)和課程、生產(chǎn)實(shí)習(xí),我熟練地掌握了機(jī)械制圖、機(jī)械設(shè)計(jì)、機(jī)械原理等專(zhuān)業(yè)基礎(chǔ)課和專(zhuān)業(yè)課方面的知識(shí),對(duì)機(jī)械制造、加工的工藝有了一個(gè)系統(tǒng)、全面的理解,達(dá)到了學(xué)習(xí)的目的。
1.1 選題的意義
本設(shè)計(jì)的目的是通過(guò)對(duì)實(shí)踐已生產(chǎn)的塑料制品——塑料儀表蓋產(chǎn)品進(jìn)行二次模具設(shè)計(jì),設(shè)計(jì)過(guò)程力求達(dá)到對(duì)所學(xué)課程的進(jìn)行全面實(shí)踐和鞏固消化,做到理論聯(lián)系實(shí)際,培養(yǎng)獨(dú)立分析和設(shè)計(jì)的能力。設(shè)計(jì)中能借助設(shè)計(jì)參考資料,掌握注塑模具的設(shè)計(jì)步驟,以及對(duì)在實(shí)踐過(guò)程中所學(xué)到的實(shí)踐經(jīng)驗(yàn)知識(shí)進(jìn)行消化與細(xì)化。同時(shí)了解當(dāng)今注塑模具的先進(jìn)技術(shù),為走上工作崗位打好基礎(chǔ)。
1.2 研究的主要內(nèi)容,擬解決的主要問(wèn)題(闡述的主要觀點(diǎn))
通過(guò)分析制品特點(diǎn),確定制品材料,并根據(jù)制品材料了解成型工藝,然后根據(jù)工藝要求進(jìn)行模具結(jié)構(gòu)設(shè)計(jì)。設(shè)計(jì)方法和手段是運(yùn)用PRO/E、UG、AutoCAD等軟件進(jìn)行3D的置頂向下設(shè)計(jì)并完成對(duì)應(yīng)的工程圖設(shè)計(jì)。內(nèi)容如下:
1)塑件成型位置及分型面選擇; 2)模具型腔數(shù)的確定,型腔的排布,流道布局以及澆口位置設(shè)置; 3)模具工作零件的結(jié)構(gòu)設(shè)計(jì); 4)模架結(jié)構(gòu)件的選擇 ;5)頂出機(jī)構(gòu)設(shè)計(jì); 6)排氣方式設(shè)計(jì);7)冷卻水路設(shè)計(jì);8)其它配件的設(shè)計(jì);9)2D裝配圖及零件圖;10)零件的工藝設(shè)計(jì);11)模具設(shè)計(jì)說(shuō)明。
1.3 研究(工作)步驟、方法及措施(思路)
步驟:
1.2D的裝配圖紙和零件圖紙;
2.零件的加工工藝路線設(shè)計(jì);
3.設(shè)計(jì)說(shuō)明書(shū)。
基本內(nèi)容:
1.塑件設(shè)計(jì),利用軟件UG4.0進(jìn)行塑件的立體建模,再在軟件AutoCAD中完成塑件尺寸及公差等技術(shù)要求的標(biāo)注,并輸出工程圖。
2.注塑設(shè)備選擇,確定塑件的型腔數(shù),并計(jì)算塑件的投影面積,通過(guò)注射量的校核、注射力的校核、鎖模力的校核、安裝部分的尺寸校核、開(kāi)模行程的校核、頂出裝置的校核,結(jié)合注塑設(shè)備的資料確定注塑設(shè)備的型號(hào)。
3.確定收縮率和分型面,首先由塑件性能的要求等,確定塑件的塑料,通過(guò)查資料確定塑件的收縮率。根據(jù)線圈骨架的工藝及結(jié)構(gòu)特點(diǎn),確定具體的分型面,大致應(yīng)為線圈骨架的中心面。
4.模架,通過(guò)塑件的大小及型腔數(shù)、澆注系統(tǒng)、導(dǎo)向部件、推出機(jī)構(gòu)、調(diào)溫系統(tǒng)等的初步估算,確定使用模架的型號(hào)。
5.澆注系統(tǒng)設(shè)計(jì),本塑件使用的是冷流道澆注系統(tǒng),在澆注系統(tǒng)設(shè)計(jì)中,包括流道的設(shè)計(jì)、噴嘴的選擇、主流道襯套的選擇等,還必須研究一模一腔澆注系統(tǒng)的平衡性設(shè)計(jì)。
6.成型零件,確定型腔數(shù)和分型面。對(duì)模腔和模芯進(jìn)行結(jié)構(gòu)設(shè)計(jì)。計(jì)算成型部件的工作尺寸。
7.頂出機(jī)構(gòu)的設(shè)計(jì),根據(jù)開(kāi)關(guān)座的結(jié)構(gòu)特點(diǎn),設(shè)計(jì)頂出機(jī)構(gòu)。
8.冷卻系統(tǒng)的設(shè)計(jì)。
9.零部件加工工藝制定,結(jié)合現(xiàn)代加工手段,利用數(shù)控CNC,電火花,線切割等方法,制定最符合經(jīng)濟(jì)效益的加工工藝。
10.完成整套模具的二維工程圖的繪制。
參考文獻(xiàn)
[1] 劉朝儒,彭福蔭,高政.機(jī)械制圖.北京:高等教育出版社,2001
[2] 孫波.機(jī)械專(zhuān)業(yè)畢業(yè)設(shè)計(jì)寶典.西安:西安電子科技大學(xué)出版社,2008
[3] 孫玲.塑料成型工藝與模具設(shè)計(jì).北京:清華大學(xué)出版社,2008
[4] 葛正浩.UG4.0注塑模具設(shè)計(jì)實(shí)例教程.北京;化學(xué)工業(yè)出版社,2007
[5] 吳生緒.塑料成型模具設(shè)計(jì)手冊(cè).北京:機(jī)械工業(yè)出版社,2008
[6] 李力,崔江紅,肖慶和,胡紀(jì)云.塑料成型模具設(shè)計(jì)與制造.北京:國(guó)防工業(yè)出版社,2007
[7] 齊衛(wèi)東.簡(jiǎn)明塑料模具設(shè)計(jì)手冊(cè).北京:北京理工大學(xué)出版社,2004
[8] 錢(qián)萍,朱紅建,朱理.CAE技術(shù)在柜機(jī)風(fēng)柵注塑模具設(shè)計(jì)中的應(yīng)用.機(jī)械制造,2010(4):17-19
[9] 甘永立.幾何量公差與檢測(cè).上海:上??茖W(xué)技術(shù)出版社,2008
[10] 李奇,朱江峰.模具設(shè)計(jì)與制造.北京;人民郵電出版社,2006
[11] 鄧明.實(shí)用模具設(shè)計(jì)簡(jiǎn)明手冊(cè).北京:機(jī)械工業(yè)出版社,2006
[12] Yang Junyi,Li Yuanyuan,"Effect of cooling Sysyterm Desipn and Process parameters on cyclic variation of Mold Temperature-Simulation by DRBEM" Plastics Rubber and Composistes Processing and Applications,1995,23(4),221-251
[13] 宋滿倉(cāng).注塑模具設(shè)計(jì).北京:電子工業(yè)出版社,2010
[14] 楊占堯,白柳.塑料模具典型結(jié)構(gòu).北京:化學(xué)工業(yè)出版社,2008
[15] 葉偉昌.機(jī)械工程及自動(dòng)化簡(jiǎn)明設(shè)計(jì)手冊(cè)(上冊(cè)).北京:機(jī)械工業(yè)出版社,2007
[16]於星主編《UGNX6 CAD 情景教程》 大連理工大學(xué)出版社 2010年;
[17]李海梅主編《注塑成型及模具設(shè)計(jì)實(shí)用技術(shù)》 化學(xué)工業(yè)出版社 2002年;
[18]隋明陽(yáng)主編 《機(jī)械設(shè)計(jì)基礎(chǔ)》 機(jī)械工業(yè)出版社2008年;
[19]甄瑞麟主編《模具制造工藝學(xué)》 清華大學(xué)出版社2008年;
[20]張維和主編《注塑模具設(shè)計(jì)實(shí)用教程》 化學(xué)工業(yè)出版社 2007年;
[21]屈華昌主編《塑料成型工藝與模具設(shè)計(jì)》 機(jī)械工業(yè)出版社 1995年。