2019-2020年人教版A版高中數(shù)學(xué)選修2-2第一章 1-4《生活中的優(yōu)化問題舉例》《教案》.doc
《2019-2020年人教版A版高中數(shù)學(xué)選修2-2第一章 1-4《生活中的優(yōu)化問題舉例》《教案》.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年人教版A版高中數(shù)學(xué)選修2-2第一章 1-4《生活中的優(yōu)化問題舉例》《教案》.doc(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年人教版A版高中數(shù)學(xué)選修2-2第一章 1-4《生活中的優(yōu)化問題舉例》《教案》 1.教學(xué)目標(biāo) 知識與技能 1.體會導(dǎo)數(shù)在解決實際問題中的作用,能解決利潤最大、用料最省、效率最高等優(yōu)化問題, 2.形成求解優(yōu)化問題的思路和方法。 過程與方法 1.通過逐步形成用到導(dǎo)數(shù)知識分析問題和解決問題,進一步培養(yǎng)學(xué)生發(fā)散思維能力。 2.提高將實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力。 情感、態(tài)度、價值觀 培養(yǎng)學(xué)生用運動變化的辯證唯物主義思想處理數(shù)學(xué)問題地積極態(tài)度 2.教學(xué)重點、難點 教學(xué)重點 利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問題。 教學(xué)難點 理解導(dǎo)數(shù)在解決實際問題時的作用,并利用其解決生活中的一些優(yōu)化問題。 3.教學(xué)用具 多媒體 4.教學(xué)過程 教學(xué)過程設(shè)計 1、復(fù)習(xí)導(dǎo)入 【師】 問題一:導(dǎo)數(shù)在研究函數(shù)中有哪些應(yīng)用? 問題二:聯(lián)系函數(shù)在實際生活中的作用,你認(rèn)為導(dǎo)數(shù)對于解決生活中的什么問題有什么作用呢? 問題三:通過預(yù)習(xí),我們把導(dǎo)數(shù)能解決的這些問題通常稱為什么問題呢? 【生】學(xué)生討論回答 【師】生活中經(jīng)常遇到求利潤最大、用料最省、效率最高等問題,這些問題通常稱為優(yōu)化問題.通過前面的學(xué)習(xí),我們知道,導(dǎo)數(shù)是求函數(shù)最大(?。┲档挠辛ぞ撸@一節(jié),我們利用導(dǎo)數(shù),解決一些生活中的優(yōu)化問題. 2、新知學(xué)習(xí) 問題1:導(dǎo)數(shù)在實際生活中的應(yīng)用主要是解決有關(guān)函數(shù)最大值、最小值的實際問題,主要有幾個方面? (1)與幾何有關(guān)的最值問題; (2)與利潤及其成本有關(guān)的最值問題; (3)效率最值問題。 【生】學(xué)生討論回答 問題2:解決優(yōu)化問題的方法有哪些? 首先是需要分析問題中各個變量之間的關(guān)系,建立適當(dāng)?shù)暮瘮?shù)關(guān)系,并確定函數(shù)的定義域,通過創(chuàng)造在閉區(qū)間內(nèi)求函數(shù)取值的情境,即核心問題是建立適當(dāng)?shù)暮瘮?shù)關(guān)系。再通過研究相應(yīng)函數(shù)的性質(zhì),提出優(yōu)化方案,使問題得以解決,在這個過程中,導(dǎo)數(shù)是一個有力的工具. 【生】學(xué)生討論回答 問題3:解決優(yōu)化問題的的步驟是怎樣的? 【生】學(xué)生討論回答 典例探究 1 海報版面尺寸的設(shè)計 【例題1】學(xué)?;虬嗉壟e行活動,通常需要張貼海報進行宣傳?,F(xiàn)讓你設(shè)計一張如圖所示的豎向張貼的海報,要求版心面積為128dm2,上、下兩邊各空2dm,左、右兩邊各空1dm。如何設(shè)計海報的尺寸,才能使四周空心面積最??? 【分析】先建立目標(biāo)函數(shù),然后利用導(dǎo)數(shù)求最值. 【規(guī)范解答】設(shè)版心的高為xdm,則版心的寬為此時四周空白面積為 因此,x=16是函數(shù)的極小值,也是最小值點。所以,當(dāng)版心高為16dm,寬為8dm時,能使四周空白面積最小。 答:當(dāng)版心高為16dm,寬為8dm時,海報四周空白面積最小。 【引申思考】 在本題解法中,“是函數(shù)的極小值點,也是最小值點?!睘槭裁?? 【生】學(xué)生討論回答 【師】一個函數(shù)在某個區(qū)間上若只有一個極值,則該極值即為這個區(qū)間上的最值。在實際問題中,由于常常只有一個根,因此若能判斷該函數(shù)的最大(小)值在的變化區(qū)間內(nèi)部得到,則這個根處的極大(?。┲稻褪撬蠛瘮?shù)的最大(?。┲?。 【一題多解】對于本題的最值你是否還有別的解法? 【探究解答】 由解法一可得: 【規(guī)范解答】 解法一: 設(shè)箱底邊長為xcm,則箱高得箱子容積 由題意可知,當(dāng)x過?。ń咏?)或過大(接近60)時,箱子容積很小,因此,16 000是最大值 答:當(dāng)x=1000px時,箱子容積最大,最大容積是16 000cm3 解法二: 設(shè)箱高為xcm,則箱底長為(60-2x)cm,則得箱子容積 (后面同解法一,略) 由題意可知,當(dāng)x過小或過大時箱子容積很小,所以最大值出現(xiàn)在極值點處. 【反思提高】 事實上,可導(dǎo)函數(shù) 在各自的定義域中都只有一個極值點,從圖象角度理解即只有一個波峰,是單峰的,因而這個極值點就是最值點,不必考慮端點的函數(shù)值 飲料瓶大小對飲料公司利潤的影響 【問題引領(lǐng)】 (1)你是否注意過,市場上等量的小包裝的物品一般比大包裝的要貴些? (2)是不是飲料瓶越大,飲料公司的利潤越大? 【例題2】 【背景知識】某制造商制造并出售球型瓶裝的某種飲料.瓶子的制造成本是分,其中r是瓶子的半徑,單位是厘米。已知每出售1 mL的飲料,制造商可獲利 0.2分,且制造商能制作的瓶子的最大半徑為6cm 【問題】 (1)瓶子的半徑多大時,能使每瓶飲料的利潤最大? (2)瓶子的半徑多大時,每瓶的利潤最?。? 【分析】先建立目標(biāo)函數(shù),轉(zhuǎn)化為函數(shù)的最值問題,然后利用導(dǎo)數(shù)求最值. 【規(guī)范解答】 由于瓶子的半徑為r,所以每瓶飲料的利潤是 (1)半徑為2cm時,利潤最小,這時f(2)<0,表示此種瓶內(nèi)飲料的利潤還不夠瓶子的成本,此時利潤是負(fù)值. (2)半徑為6cm時,利潤最大 【新視角解答】 我們已經(jīng)求出利潤和瓶子半徑之間的關(guān)系式:. 圖象如圖,能否根據(jù)它的圖象說出其實際意義? 【合作探究】 當(dāng)時,為減函數(shù),其實際意義為:瓶子的半徑小于2cm時,瓶子的半徑越大,利潤越小,半徑為2cm 時,利潤最??; 當(dāng)時,為增函數(shù),其實際意義為:瓶子的半徑大于2cm時,瓶子的半徑越大,利潤越大。 特別的,當(dāng)r=3時,?即瓶子的半徑為3cm時,飲料的利潤與飲料瓶的成本恰好相等,r>3時,利潤才為正值. 當(dāng)r=2時,f(2)<0,即瓶子的半徑為2cm時,飲料的利潤最小,飲料利潤還不夠飲料瓶子的成本,此時利潤是負(fù)值。 磁盤的最大存儲量問題 【例題3】 【背景知識】 計算機把數(shù)據(jù)存儲在磁盤上。磁盤是帶有磁性介質(zhì)的圓盤,并有操作系統(tǒng)將其格式化成磁道和扇區(qū)。磁道是指不同半徑所構(gòu)成的同心軌道,扇區(qū)是指被同心角分割所成的扇形區(qū)域。磁道上的定長弧段可作為基本存儲單元,根據(jù)其磁化與否可分別記錄數(shù)據(jù)0或1,這個基本單元通常被稱為比特(bit)。 為了保障磁盤的分辨率,磁道之間的寬度必需大于m,每比特所占用的磁道長度不得小于n。為了數(shù)據(jù)檢索便利,磁盤格式化時要求所有磁道要具有相同的比特數(shù)。 【問題】 現(xiàn)有一張半徑為R的磁盤,它的存儲區(qū)是半徑介于r與R之間的環(huán)形區(qū)域. (1)是不是r越小,磁盤的存儲量越大? (2) r為多少時,磁盤具有最大存儲量(最外面的磁道不存儲任何信息)? 【規(guī)范解答】 【規(guī)范解答】 由題意知:存儲量=磁道數(shù)每磁道的比特數(shù)。 設(shè)存儲區(qū)的半徑介于r與R之間,由于磁道之間的寬度必需大于m,且最外面的磁道不存儲任何信息,故磁道數(shù)最多可達由于每條磁道上的比特數(shù)相同,為獲得最大存儲量,最內(nèi)一條磁道必須裝滿,即每條磁道上的比特數(shù)可達 所以,磁盤總存儲量 【思考】根據(jù)以上三個例題,總結(jié)用導(dǎo)數(shù)求解優(yōu)化問題的基本步驟. 【例題總結(jié)】(1)認(rèn)真分析問題中各個變量之間的關(guān)系,正確設(shè)定最值變量y與自變量x,把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,列出適當(dāng)?shù)暮瘮?shù)關(guān)系式并確定函數(shù)的定義區(qū)間; (2)求得出所有實數(shù)根; (3)比較函數(shù)在各個根和端點處的函數(shù)值的大小, 根據(jù)問題的實際意義確定函數(shù)的最大值或最小值。 【提別提醒】 由問題的實際意義來判斷函數(shù)最值時,如果函數(shù)在此區(qū)間上只有一個極值點,那么這個極值就是所求最值,不必再與端點值比較. 課堂練習(xí) 1 .某旅行社在暑假期間推出如下旅游團組團辦法:達到100人的團體,每人收費1000元。如果團體的人數(shù)超過100人,那么每超過1人,每人平均收費降低5元,但團體人數(shù)不能超過180人,如何組團可使旅行社的收費最多? (不到100人不組團) 【分析】先列出問題的文字模型(標(biāo)準(zhǔn)收費數(shù)-降低的收費數(shù)),再轉(zhuǎn)化為數(shù)學(xué)模型. 【規(guī)范解答】 設(shè)參加旅游的人數(shù)為x,旅游團收費為y 則依題意有 所以當(dāng)參加人數(shù)為150人時,旅游團的收費最高,可達112500元。 2.圓柱形金屬飲料罐的容積一定時,它的高與底與半徑應(yīng)怎樣選取,才能使所用的材料最??? 答:當(dāng)罐的高與底直徑相等時,所用材料最省 【變式練習(xí)】 當(dāng)圓柱形金屬飲料罐的表面積為定值S時,它的高與底面半徑應(yīng)怎樣選取才能使所用材料最省? 5.課堂小結(jié) 6.課后習(xí)題 課本37頁A組1,2;B組第1題 7.板書- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 生活中的優(yōu)化問題舉例 教案 2019-2020年人教版A版高中數(shù)學(xué)選修2-2第一章 1-4生活中的優(yōu)化問題舉例教案 2019 2020 年人教版 高中數(shù)學(xué) 選修 第一章 生活 中的 優(yōu)化 問題
鏈接地址:http://zhongcaozhi.com.cn/p-6183892.html