2019-2020年高三數(shù)學(xué)專題復(fù)習(xí) 直線與圓的方程及應(yīng)用檢測(cè)題.doc
《2019-2020年高三數(shù)學(xué)專題復(fù)習(xí) 直線與圓的方程及應(yīng)用檢測(cè)題.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué)專題復(fù)習(xí) 直線與圓的方程及應(yīng)用檢測(cè)題.doc(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué)專題復(fù)習(xí) 直線與圓的方程及應(yīng)用檢測(cè)題 一、考點(diǎn)解讀 解析幾何是江蘇高考必考題之一,它包含兩個(gè)C級(jí)考點(diǎn),正常情況下,考一小(填空)一大(解答).小題常涉及直線方程及應(yīng)用,圓錐曲線方程及其性質(zhì),有一定的計(jì)算量;大題往往與圓有關(guān),涉及到方程,位置關(guān)系、定點(diǎn)、定值、定線等.圓與圓錐曲線的綜合考查,對(duì)數(shù)學(xué)思想方法要求比較高,能靈活使用待定系數(shù)法、定義法等求方程,能用配方法、換元法等,結(jié)合圖形將問(wèn)題進(jìn)行轉(zhuǎn)化,通過(guò)函數(shù)、方程、不等式等思想來(lái)解決問(wèn)題. 1. 理解直線的斜率和傾斜角的概念;掌握過(guò)兩點(diǎn)的直線斜率的計(jì)算公式;了解直線的傾斜角的范圍;理解直線的斜率和傾斜角之間的關(guān)系,能根據(jù)直線的傾斜角求出直線的斜率. 2. 掌握直線方程的幾種形式(點(diǎn)斜式、斜截式、兩點(diǎn)式、截距式、一般式)的特點(diǎn)與適用范圍;能根據(jù)問(wèn)題的具體條件選擇恰當(dāng)?shù)男问角笾本€的方程;了解直線方程的斜截式與一次函數(shù)的關(guān)系. 3. 能根據(jù)斜率判定兩條直線平行或垂直. 4. 了解二元一次方程組的解與兩直線的交點(diǎn)坐標(biāo)之間的關(guān)系,體會(huì)數(shù)形結(jié)合思想;能用解方程組的方法求兩直線的交點(diǎn)坐標(biāo). 5. 掌握兩點(diǎn)間的距離公式和點(diǎn)到直線的距離公式及其簡(jiǎn)單應(yīng)用;會(huì)求兩條平行直線間的距離. 6. 掌握?qǐng)A的標(biāo)準(zhǔn)方程與一般方程,能根據(jù)問(wèn)題的條件選擇恰當(dāng)?shù)男问角髨A的方程;理解圓的標(biāo)準(zhǔn)方程與一般方程之間的關(guān)系,會(huì)進(jìn)行互化. 7. 能根據(jù)直線與圓的方程判斷其位置關(guān)系(相交、相切、相離);能根據(jù)圓的方程判斷圓與圓的位置關(guān)系(外離、外切、相交、內(nèi)切、內(nèi)含).能用直線和圓的方程解決一些簡(jiǎn)單的問(wèn)題. 二、課前預(yù)習(xí) 1. 與直線x+y-1=0垂直的直線的傾斜角為_(kāi)_______. 2.過(guò)點(diǎn)(2,1)且在兩坐標(biāo)軸截距相等的直線方程是________________. 3.直線x-y+m=0與圓x2+y2-2x-2=0相切,則實(shí)數(shù)m=________. 4.在平面直角坐標(biāo)系xOy中,已知圓x2+y2=4上有且僅有四個(gè)點(diǎn)到直線12x-5y+c=0的距離為1,則實(shí)數(shù)c的取值范圍是________. 三、例題講解 例1、已知圓C過(guò)點(diǎn)(1,0),且圓心在x軸的正半軸上,直線l:y=x-1被圓C所截得的弦長(zhǎng)為2,求過(guò)圓心且與直線l垂直的直線的方程. 例2、如圖,平面直角坐標(biāo)系xOy中,△AOB和△COD為兩等腰直角三角形,A(-2,0),C(a,0)(a>0).△AOB和△COD的外接圓圓心分別為M,N. (1) 若⊙M與直線CD相切,求直線CD的方程; (2) 若直線AB截⊙N所得弦長(zhǎng)為4,求⊙N的標(biāo)準(zhǔn)方程; (3) 是否存在這樣的⊙N,使得⊙N上有且只有三個(gè)點(diǎn)到直線AB的距離為,若存在,求此時(shí)⊙N的標(biāo)準(zhǔn)方程;若不存在,說(shuō)明理由. 例3、已知圓C:x2+(y-3)2=4,一動(dòng)直線l過(guò)點(diǎn)A(-1,0)與圓C相交于P、Q兩點(diǎn),M是PQ的中點(diǎn),l與直線m:x+3y+6=0相交于點(diǎn)N. (1) 求證:當(dāng)l與m垂直時(shí),l必過(guò)圓心C; (2) 當(dāng)PQ=2時(shí),求直線l的方程; (3) 探索的值是否與直線l的傾斜角有關(guān),若無(wú)關(guān),請(qǐng)求出其值;若有關(guān),請(qǐng)說(shuō)明理由. 例4、已知橢圓E:+=1(a>b>0)的離心率為,且過(guò)點(diǎn)P(2,),設(shè)橢圓E的右準(zhǔn) 線l與x軸的交點(diǎn)為A,橢圓的上頂點(diǎn)為B,直線AB被以原點(diǎn)為圓心的圓O所截得的弦長(zhǎng)為. (1) 求橢圓E的方程及圓O的方程; (2) 若M是準(zhǔn)線l上縱坐標(biāo)為t的點(diǎn),求證:存在一個(gè)異于M的點(diǎn)Q,對(duì)于圓O上的任意一點(diǎn)N,有為定值;且當(dāng)M在直線l上運(yùn)動(dòng)時(shí),點(diǎn)Q在一個(gè)定圓上. 四、課后練習(xí) 1. 若直線3x+y+a=0過(guò)圓x2+y2+2x-4y=0的圓心,則a的值為_(kāi)_______. 2. 在圓x2+y2-2x-6y=0內(nèi),過(guò)點(diǎn)E(0,1)的最長(zhǎng)弦和最短弦分別是AC和BD,則四邊形ABCD的面積為_(kāi)_______. 3. 過(guò)點(diǎn)(-1,-2)的直線l被圓x2+y2-2x-2y+1=0截得的弦長(zhǎng)為,則直線l的斜率為_(kāi)_______. 4.直線y=kx+3與圓(x-2)2+(y-3)2=4相交于M,N兩點(diǎn),若|MN|≥2,則實(shí)數(shù)k的取值范圍是________. 5.已知直線l:y=x+m,m∈R. (1) 若以點(diǎn)M(2,0)為圓心的圓與直線l相切于點(diǎn)P,且點(diǎn)P在y軸上,求該圓的方程; (2) 若直線l關(guān)于x軸對(duì)稱的直線為l′,問(wèn)直線l′與拋物線C:x2=4y是否相切?說(shuō)明理由. 6.如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上投影,M為PD上一點(diǎn), 且|MD|=|PD|. (1) 當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程; (2) 求過(guò)點(diǎn)(3,0)且斜率為的直線被C所截線段的長(zhǎng)度. 7. 在平面直角坐標(biāo)系xOy中,已知定點(diǎn)A(-4,0)、B(4,0),動(dòng)點(diǎn)P與A、B兩點(diǎn)連線的斜率之積為-. (1) 求點(diǎn)P的軌跡方程; (2) 設(shè)點(diǎn)P的軌跡與y軸負(fù)半軸交于點(diǎn)C.半徑為r的圓M的圓心M在線段AC的垂直平分線上,且在y軸右側(cè),圓M被y軸截得的弦長(zhǎng)為r. ① 求⊙M的方程; ② 當(dāng)r變化時(shí),是否存在定直線l與動(dòng)圓M均相切?如果存在,求出定直線l的方程;如果不存在,說(shuō)明理由.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高三數(shù)學(xué)專題復(fù)習(xí) 直線與圓的方程及應(yīng)用檢測(cè)題 2019 2020 年高 數(shù)學(xué) 專題 復(fù)習(xí) 直線 方程 應(yīng)用 檢測(cè)
鏈接地址:http://zhongcaozhi.com.cn/p-2910475.html