2019-2020年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測(cè) 第四章 第3講 三角函數(shù)的圖象與性質(zhì) 理 新人教A版.doc
《2019-2020年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測(cè) 第四章 第3講 三角函數(shù)的圖象與性質(zhì) 理 新人教A版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測(cè) 第四章 第3講 三角函數(shù)的圖象與性質(zhì) 理 新人教A版.doc(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測(cè) 第四章 第3講 三角函數(shù)的圖象與性質(zhì) 理 新人教A版 一、選擇題 1.函數(shù)f(x)=2sin xcos x是( ). A.最小正周期為2 π的奇函數(shù) B.最小正周期為2 π的偶函數(shù) C.最小正周期為π的奇函數(shù) D.最小正周期為π的偶函數(shù) 解析 f(x)=2sin xcos x=sin 2x.∴f(x)是最小正周期為π的奇函數(shù). 答案 C 2.已知函數(shù)f(x)=sin(x+θ)+cos(x+θ)是偶函數(shù),則θ的值為 ( ). A.0 B. C. D. 解析 據(jù)已知可得f(x)=2sin,若函數(shù)為偶函數(shù),則必有θ+=kπ+(k∈Z),又由于θ∈,故有θ+=,解得θ=,經(jīng)代入檢驗(yàn)符合題意. 答案 B 3.函數(shù)y=2sin(0≤x≤9)的最大值與最小值之和為 ( ). A.2- B.0 C.-1 D.-1- 解析 ∵0≤x≤9,∴-≤x-≤,∴-≤sin≤1,∴-≤2sin≤2.∴函數(shù)y=2sin(0≤x≤9)的最大值與最小值之和為2-. 答案 A 4.函數(shù)f(x)=(1+tan x)cos x的最小正周期為( ). A.2π B. C.π D. 解析 依題意,得f(x)=cos x+sin x=2sin.故最小正周期為2π. 答案 A 5.函數(shù)y=sin2x+sin x-1的值域?yàn)? ). A.[-1,1] B. C. D. 解析 (數(shù)形結(jié)合法)y=sin2x+sin x-1,令sin x=t,則有y=t2+t-1,t∈[-1,1],畫出函數(shù)圖像如圖所示,從圖像可以看出,當(dāng)t=-及t=1時(shí),函數(shù)取最值,代入y=t2+t-1可得y∈. 答案 C 6.已知ω>0,0<φ<π,直線x=和x=是函數(shù)f(x)=sin(ωx+φ)圖象的兩條相鄰的對(duì)稱軸,則φ= ( ). A. B. C. D. 解析 由題意可知函數(shù)f(x)的周期T=2=2π,故ω=1,∴f(x)=sin(x+φ),令x+φ=kπ+(k∈Z),將x=代入可得φ=kπ+(k∈Z),∵0<φ<π,∴φ=. 答案 A 二、填空題 7.定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)x∈時(shí),f(x)=sin x,則f的值為________. 解析 f=f=f=sin =. 答案 8.函數(shù)f(x)=的最大值為M,最小值為m,則M+m=________. 解析 (構(gòu)造法)根據(jù)分子和分母同次的特點(diǎn),把分子展開,得到部分分式,f(x)=1+,f(x)-1為奇函數(shù),則m-1=-(M-1),所以M+m=2. 答案 2 9.已知函數(shù)f(x)=(sin x+cos x)-|sin x-cos x|,則f(x)的值域是________. 解析 f(x)=(sin x+cos x)-|sin x-cos x| = 畫出函數(shù)f(x)的圖象,可得函數(shù)的最小值為-1,最大值為,故值域?yàn)? 答案 10.下列命題中: ①α=2kπ+(k∈Z)是tan α=的充分不必要條件; ②函數(shù)f(x)=|2cos x-1|的最小正周期是π; ③在△ABC中,若cos Acos B>sin Asin B,則△ABC為鈍角三角形; ④若a+b=0,則函數(shù)y=asin x-bcos x的圖象的一條對(duì)稱軸方程為x=. 其中是真命題的序號(hào)為________. 解析?、佟擀粒?kπ+(k∈Z)?tan α=, 而tan α=?/ α=2kπ+(k∈Z),∴①正確. ②∵f(x+π)=|2cos(x+π)-1| =|-2cos x-1|=|2cos x+1|≠f(x),∴②錯(cuò)誤. ③∵cos Acos B>sin Asin B,∴cos Acos B-sin Asin B>0, 即cos(A+B)>0,∵00, ∴-2asin∈[-2a,a].∴f(x)∈[b,3a+b], 又∵-5≤f(x)≤1,∴b=-5,3a+b=1, 因此a=2,b=-5. (2)由(1)得a=2,b=-5,∴f(x)=-4sin-1, g(x)=f=-4sin-1 =4sin-1, 又由lg g(x)>0,得g(x)>1, ∴4sin-1>1,∴sin>, ∴2kπ+<2x+<2kπ+,k∈Z, 其中當(dāng)2kπ+<2x+≤2kπ+,k∈Z時(shí),g(x)單調(diào)遞增,即kπ<x≤kπ+,k∈Z, ∴g(x)的單調(diào)增區(qū)間為,k∈Z. 又∵當(dāng)2kπ+<2x+<2kπ+,k∈Z時(shí),g(x)單調(diào)遞減,即kπ+<x<kπ+,k∈Z. ∴g(x)的單調(diào)減區(qū)間為,k∈Z. 綜上,g(x)的遞增區(qū)間為(k∈Z);遞減區(qū)間為(k∈Z).- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測(cè) 第四章 第3講 三角函數(shù)的圖象與性質(zhì) 新人教A版 2019 2020 年高 數(shù)學(xué) 專題 復(fù)習(xí) 導(dǎo)練測(cè) 第四 三角函數(shù) 圖象 性質(zhì) 新人
鏈接地址:http://zhongcaozhi.com.cn/p-2733359.html