《人教版 高中數(shù)學(xué)選修23 2.1.1離散型隨機(jī)變量教案》由會(huì)員分享,可在線閱讀,更多相關(guān)《人教版 高中數(shù)學(xué)選修23 2.1.1離散型隨機(jī)變量教案(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、人教版高中數(shù)學(xué)精品資料
2.1.1離散型隨機(jī)變量
教學(xué)目標(biāo):
知識(shí)目標(biāo):1.理解隨機(jī)變量的意義;
2.學(xué)會(huì)區(qū)分離散型與非離散型隨機(jī)變量,并能舉出離散性隨機(jī)變量
的例子;
3.理解隨機(jī)變量所表示試驗(yàn)結(jié)果的含義,并恰當(dāng)?shù)囟x隨機(jī)變量.
能力目標(biāo):發(fā)展抽象、概括能力,提高實(shí)際解決問題的能力.
情感目標(biāo):學(xué)會(huì)合作探討,體驗(yàn)成功,提高學(xué)習(xí)數(shù)學(xué)的興趣.
教學(xué)重點(diǎn):隨機(jī)變量、離散型隨機(jī)變量、連續(xù)型隨機(jī)變量的意義
教學(xué)難點(diǎn):隨機(jī)變量、離散型隨機(jī)變量、連續(xù)型隨機(jī)變量的意義
授課類型:新授課
課時(shí)安排:1課時(shí)
教 具:多媒體、實(shí)物投影儀
內(nèi)容分析:
本章是在初中“統(tǒng)計(jì)初步
2、”和高中必修課“概率”的基礎(chǔ)上,學(xué)習(xí)隨機(jī)變量和統(tǒng)計(jì)的一些知識(shí).學(xué)習(xí)這些知識(shí)后,我們將能解決類似引言中的一些實(shí)際問題
教學(xué)過程:
一、復(fù)習(xí)引入:
展示教科書章頭提出的兩個(gè)實(shí)際問題(有條件的學(xué)??捎糜?jì)算機(jī)制作好課件輔助教學(xué)),激發(fā)學(xué)生的求知欲
某人射擊一次,可能出現(xiàn)命中0環(huán),命中1環(huán),…,命中10環(huán)等結(jié)果,即可能出現(xiàn)的結(jié)果可能由0,1,……10這11個(gè)數(shù)表示;
某次產(chǎn)品檢驗(yàn),在可能含有次品的100件產(chǎn)品中任意抽取4件,那么其中含有的次品可能是0件,1件,2件,3件,4件,即可能出現(xiàn)的結(jié)果可以由0,1,2,3,4這5個(gè)數(shù)表示
在這些隨機(jī)試驗(yàn)中,可能出現(xiàn)的結(jié)果都可以用一個(gè)數(shù)來(lái)表示.
3、這個(gè)數(shù)在隨機(jī)試驗(yàn)前是否是預(yù)先確定的?在不同的隨機(jī)試驗(yàn)中,結(jié)果是否不變?
觀察,概括出它們的共同特點(diǎn)
二、講解新課:
思考1:擲一枚骰子,出現(xiàn)的點(diǎn)數(shù)可以用數(shù)字1 , 2 ,3,4,5,6來(lái)表示.那么擲一枚硬幣的結(jié)果是否也可以用數(shù)字來(lái)表示呢?
擲一枚硬幣,可能出現(xiàn)正面向上、反面向上兩種結(jié)果.雖然這個(gè)隨機(jī)試驗(yàn)的結(jié)果不具有數(shù)量性質(zhì),但我們可以用數(shù)1和 0分別表示正面向上和反面向上(圖2.1一1 ) .
在擲骰子和擲硬幣的隨機(jī)試驗(yàn)中,我們確定了一個(gè)對(duì)應(yīng)關(guān)系,使得每一個(gè)試驗(yàn)結(jié)果都用一個(gè)確定的數(shù)字表示.在這個(gè)對(duì)應(yīng)關(guān)系下,數(shù)字隨著試驗(yàn)結(jié)果的變化而變化.
定義1:隨著試驗(yàn)結(jié)果變化而變化的變量
4、稱為隨機(jī)變量(random variable ).隨機(jī)變量常用字母 X , Y,,,… 表示.
思考2:隨機(jī)變量和函數(shù)有類似的地方嗎?
隨機(jī)變量和函數(shù)都是一種映射,隨機(jī)變量把隨機(jī)試驗(yàn)的結(jié)果映為實(shí)數(shù),函數(shù)把實(shí)數(shù)映為實(shí)數(shù).在這兩種映射之間,試驗(yàn)結(jié)果的范圍相當(dāng)于函數(shù)的定義域,隨機(jī)變量的取值范圍相當(dāng)于函數(shù)的值域.我們把隨機(jī)變量的取值范圍叫做隨機(jī)變量的值域.
例如,在含有10件次品的100 件產(chǎn)品中,任意抽取4件,可能含有的次品件數(shù)X 將隨著抽取結(jié)果的變化而變化,是一個(gè)隨機(jī)變量,其值域是{0, 1, 2 , 3, 4 } .
利用隨機(jī)變量可以表達(dá)一些事件.例如{X=0}表示“抽出0件次品” ,
5、{X =4}表示“抽出4件次品”等.你能說出{X< 3 }在這里表示什么事件嗎?“抽出 3 件以上次品”又如何用 X 表示呢?
定義2:所有取值可以一一列出的隨機(jī)變量,稱為離散型隨機(jī)變量 ( discrete random variable ) .
離散型隨機(jī)變量的例子很多.例如某人射擊一次可能命中的環(huán)數(shù) X 是一個(gè)離散型隨機(jī)變量,它的所有可能取值為0,1,…,10;某網(wǎng)頁(yè)在24小時(shí)內(nèi)被瀏覽的次數(shù)Y也是一個(gè)離散型隨機(jī)變量,它的所有可能取值為0, 1,2,….
思考3:電燈的壽命X是離散型隨機(jī)變量嗎?
電燈泡的壽命 X 的可能取值是任何一個(gè)非負(fù)實(shí)數(shù),而所有非負(fù)實(shí)數(shù)不能一一列出,所以 X
6、不是離散型隨機(jī)變量.
在研究隨機(jī)現(xiàn)象時(shí),需要根據(jù)所關(guān)心的問題恰當(dāng)?shù)囟x隨機(jī)變量.例如,如果我們僅關(guān)心電燈泡的使用壽命是否超過1000 小時(shí),那么就可以定義如下的隨機(jī)變量:
與電燈泡的壽命 X 相比較,隨機(jī)變量Y的構(gòu)造更簡(jiǎn)單,它只取兩個(gè)不同的值0和1,是一個(gè)離散型隨機(jī)變量,研究起來(lái)更加容易.
連續(xù)型隨機(jī)變量: 對(duì)于隨機(jī)變量可能取的值,可以取某一區(qū)間內(nèi)的一切值,這樣的變量就叫做連續(xù)型隨機(jī)變量
如某林場(chǎng)樹木最高達(dá)30米,則林場(chǎng)樹木的高度是一個(gè)隨機(jī)變量,它可以取(0,30]內(nèi)的一切值
4.離散型隨機(jī)變量與連續(xù)型隨機(jī)變量的區(qū)別與聯(lián)系: 離散型隨機(jī)變量與連續(xù)型隨機(jī)變量都是用變量
7、表示隨機(jī)試驗(yàn)的結(jié)果;但是離散型隨機(jī)變量的結(jié)果可以按一定次序一一列出,而連續(xù)性隨機(jī)變量的結(jié)果不可以一一列出
注意:(1)有些隨機(jī)試驗(yàn)的結(jié)果雖然不具有數(shù)量性質(zhì),但可以用數(shù)量來(lái)表達(dá)如投擲一枚硬幣,=0,表示正面向上,=1,表示反面向上
(2)若是隨機(jī)變量,是常數(shù),則也是隨機(jī)變量
三、講解范例:
例1. 寫出下列隨機(jī)變量可能取的值,并說明隨機(jī)變量所取的值表示的隨機(jī)試驗(yàn)的結(jié)果
(1)一袋中裝有5只同樣大小的白球,編號(hào)為1,2,3,4,5 現(xiàn)從該袋內(nèi)隨機(jī)取出3只球,被取出的球的最大號(hào)碼數(shù)ξ;
(2)某單位的某部電話在單位時(shí)間內(nèi)收到的呼叫次數(shù)η
解:(1) ξ可取3,4,
8、5
ξ=3,表示取出的3個(gè)球的編號(hào)為1,2,3;
ξ=4,表示取出的3個(gè)球的編號(hào)為1,2,4或1,3,4或2,3,4;
ξ=5,表示取出的3個(gè)球的編號(hào)為1,2,5或1,3,5或1,4,5或2,3或3,4,5
(2)η可取0,1,…,n,…
η=i,表示被呼叫i次,其中i=0,1,2,…
例2. 拋擲兩枚骰子各一次,記第一枚骰子擲出的點(diǎn)數(shù)與第二枚骰子擲出的點(diǎn)數(shù)的差為ξ,試問:“ξ> 4”表示的試驗(yàn)結(jié)果是什么?
答:因?yàn)橐幻恩蛔拥狞c(diǎn)數(shù)可以是1,2,3,4,5,6六種結(jié)果之一,由已知得-5≤ξ≤5,也就是說“ξ>4”就是“ξ=5”所以,“ξ>4”表示第一枚
9、為6點(diǎn),第二枚為1點(diǎn)
例3 某城市出租汽車的起步價(jià)為10元,行駛路程不超出4km,則按10元的標(biāo)準(zhǔn)收租車費(fèi)若行駛路程超出4km,則按每超出lkm加收2元計(jì)費(fèi)(超出不足1km的部分按lkm計(jì)).從這個(gè)城市的民航機(jī)場(chǎng)到某賓館的路程為15km.某司機(jī)常駕車在機(jī)場(chǎng)與此賓館之間接送旅客,由于行車路線的不同以及途中停車時(shí)間要轉(zhuǎn)換成行車路程(這個(gè)城市規(guī)定,每停車5分鐘按lkm路程計(jì)費(fèi)),這個(gè)司機(jī)一次接送旅客的行車路程ξ是一個(gè)隨機(jī)變量,他收旅客的租車費(fèi)可也是一個(gè)隨機(jī)變量
(1)求租車費(fèi)η關(guān)于行車路程ξ的關(guān)系式;
(Ⅱ)已知某旅客實(shí)付租車費(fèi)38元,而出租汽車實(shí)際行駛了15km,問出租車在途中因
10、故停車?yán)塾?jì)最多幾分鐘?
解:(1)依題意得η=2(ξ-4)+10,即η=2ξ+2
(Ⅱ)由38=2ξ+2,得ξ=18,5(18-15)=15.
所以,出租車在途中因故停車?yán)塾?jì)最多15分鐘.
四、課堂練習(xí):
1.①某尋呼臺(tái)一小時(shí)內(nèi)收到的尋呼次數(shù);②長(zhǎng)江上某水文站觀察到一天中的水位;③某超市一天中的顧客量 其中的是連續(xù)型隨機(jī)變量的是( )
A.①; B.②; C.③; D.①②③
2.隨機(jī)變量的所有等可能取值為,若,則( )
A.; B.; C.; D.不能確定
3.拋擲兩次骰子,兩個(gè)點(diǎn)的和不等于8的概率為( )
A.;
11、 B.; C.; D.
4.如果是一個(gè)離散型隨機(jī)變量,則假命題是( )
A. 取每一個(gè)可能值的概率都是非負(fù)數(shù);B. 取所有可能值的概率之和為1;
C. 取某幾個(gè)值的概率等于分別取其中每個(gè)值的概率之和;
D. 在某一范圍內(nèi)取值的概率大于它取這個(gè)范圍內(nèi)各個(gè)值的概率之和
答案:1.B 2.C 3.B 4.D
五、小結(jié) :隨機(jī)變量離散型、隨機(jī)變量連續(xù)型隨機(jī)變量的概念 隨機(jī)變量ξ是關(guān)于試驗(yàn)結(jié)果的函數(shù),即每一個(gè)試驗(yàn)結(jié)果對(duì)應(yīng)著一個(gè)實(shí)數(shù);隨機(jī)變量ξ的線性組合η=aξ+b(其中a、b是常數(shù))也是隨機(jī)變量
六、課后作業(yè):
七、板書設(shè)計(jì)(略)
八、教學(xué)反思:
1、怎樣防止所謂新課程理念流于形式,如何合理選擇值得討論的問題,實(shí)現(xiàn)學(xué)生實(shí)質(zhì)意義的參與.
2、防止過于追求教學(xué)的情境化傾向,怎樣把握一個(gè)度.