蘇教版高三數(shù)學(xué)復(fù)習(xí)課件11.1合情推理與演繹推理.ppt
《蘇教版高三數(shù)學(xué)復(fù)習(xí)課件11.1合情推理與演繹推理.ppt》由會員分享,可在線閱讀,更多相關(guān)《蘇教版高三數(shù)學(xué)復(fù)習(xí)課件11.1合情推理與演繹推理.ppt(35頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
理解合情推理的含義,能利用歸納和類比等進(jìn)行簡單的推理,了解合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用/了解演繹推理的重要性,掌握演繹推理的基本模式,并能運(yùn)用它們進(jìn)行簡單推理/了解合情推理和演繹推理之間的聯(lián)系和差異.,第十一知識塊推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入第1課時合情推理與演繹推理,合情推理與演繹推理是中學(xué)數(shù)學(xué)的重要內(nèi)容,是高考重點(diǎn)考查的內(nèi)容之一,幾乎每年都有涉及,主要以填空題的形式出現(xiàn),考查歸納推理和類比推理的運(yùn)用以及同學(xué)們的邏輯推理能力.,【命題預(yù)測】,1.在歸納推理中,前提和結(jié)論之間的聯(lián)系不是必然的,在前提真實(shí)的情況下,結(jié)論未必真.運(yùn)用歸納推理的一般步驟是:首先,通過觀察個別情況發(fā)現(xiàn)某些相似性(特例的共性或一般規(guī)律);然后,把這種相似性推廣為一個明確表述的一般規(guī)律(猜想);最后,對所得出的一般性命題進(jìn)行檢驗(yàn).2.運(yùn)用類比推理,不僅可以跨越各類事物的界限,進(jìn)行不同事物的對比,而且可以比較事物的本質(zhì)屬性和非本質(zhì)屬性,同時,類比推理比歸納推理更富有想象,因而也更具有創(chuàng)造性.在進(jìn)行類比時要盡量從本質(zhì)上去類比,不要被表現(xiàn)象迷惑,否則,只抓住一點(diǎn)表面的相似甚至假象就去類比,就會犯機(jī)械類比的錯誤.,【應(yīng)試對策】,3.演繹推理是數(shù)學(xué)證明中的基本推理形式,只要前提正確,推理形式正確,得到的結(jié)論就正確.在數(shù)學(xué)中,合情推理為我們猜想、發(fā)現(xiàn)新的規(guī)律提供依據(jù)和方法,演繹推理用于證明這些猜想、發(fā)現(xiàn)是否為真,但數(shù)學(xué)結(jié)論、證明思路等的發(fā)現(xiàn),主要靠合情推理,因此,我們不僅要學(xué)會證明,也要學(xué)會猜想.4.在推理論證的過程中,一個稍復(fù)雜的證明題經(jīng)常要由幾個三段論式才能完成,大前提通常省略不寫,或者寫在結(jié)論后面的小括號內(nèi),小前提有時也可以省去,而采取某種簡明的格式.,合情推理的應(yīng)用合情推理主要包括歸納推理和類比推理.在數(shù)學(xué)研究中,在得到一個新結(jié)論前,合情推理能幫助猜測和發(fā)現(xiàn)結(jié)論,證明一個數(shù)學(xué)結(jié)論之前,合情推理常常能為證明提供思路與方向.(2)合情推理的過程概括為:,【知識拓展】,,(3)合情推理是數(shù)學(xué)的基本思維過程,也是人們學(xué)習(xí)和生活中經(jīng)常使用的思維方式.在解決問題的過程中,合情推理具有猜測和發(fā)表結(jié)論,探索和提供思路的作用.有利于創(chuàng)新意識的培養(yǎng).在能力高考的要求下,推理方法顯得更加重要.在復(fù)習(xí)中要把推理方法形成自己的解決問題的意識,使得問題的解決有章有法,得心應(yīng)手.,[注意](1)歸納推理分為完全歸納和不完全歸納,由歸納推理所得的結(jié)論雖然未必是可靠的,但它由特殊到一般,由具體到抽象的認(rèn)識功能,對科學(xué)的發(fā)現(xiàn)是十分有用的.觀察、實(shí)驗(yàn),對有限的資料作歸納整理,提出帶有規(guī)律性的說法,乃是科學(xué)研究的最基本的方法之一.(2)類比推理是根據(jù)兩個對象有一部分屬性類似,推出這兩個對象的其他屬性亦類似的一種推理方法,例如我們拿分式同分?jǐn)?shù)來類比,平面幾何與立體幾何中的某些對象類比等.我們必須清楚類比并不是論證,它可以幫助我們發(fā)現(xiàn)真理.,1.歸納推理(1)歸納推理的定義從個別事實(shí)中推演出的結(jié)論,像這樣的推理通常稱為歸納推理.(2)歸納推理的思維過程大致如圖,一般,2.類比推理(1)根據(jù)兩個(或兩類)對象之間在某些方面的相似或相同,推演出它們在其他方面也具有相同或,這樣的推理稱為類比推理.(2)類比推理的思維過程是:思考:歸納推理和類比推理的特點(diǎn)與區(qū)別是什么?提示:兩種推理的特點(diǎn)與區(qū)別:類比推理和歸納推理的結(jié)論都是有待于證明的.歸納推理是由特殊到一般的推理,類比推理是由特殊到特殊的推理.,相似的性質(zhì),3.演繹推理(1)演繹推理是根據(jù)已有的事實(shí)和正確的結(jié)論(包括定義、公理、定理等),按照嚴(yán)格的步驟得到的推理過程.(2)主要形式是三段論式推理.(3)三段論的常用格式為M-P(M是P)①,新結(jié)論,②S-P(S是P)③其中,①是,它提供了一個一般性的原理;②是,它指出了一個特殊對象;③是,它是根據(jù)一般原理,對特殊情況作出的判斷.,,S-M(S是M),大前提,小前提,結(jié)論,1.(江蘇省高考名校聯(lián)考信息優(yōu)化卷)已知如下結(jié)論:“等邊三角形內(nèi)任意一點(diǎn)到各邊的距離之和等于此三角形的高”,將結(jié)論拓展到空間中的正四面體(棱長都相等的三棱錐),可得出的正確結(jié)論是:________.答案:正四面體內(nèi)任意一點(diǎn)到各個面的距離之和等于此正四面體的高,2.“金導(dǎo)電、銀導(dǎo)電、銅導(dǎo)電、錫導(dǎo)電,所以一切金屬都導(dǎo)電”.此推理方法是________.解析:由特殊到一般的推理.答案:歸納推理,3.把1,3,6,10,15,21,…這些數(shù)叫做三角形數(shù),這是因?yàn)檫@些數(shù)目的點(diǎn)可以排成一個正三角形(如圖):試求第七個三角形數(shù)是________.解析:第七個三角形數(shù)為:1+2+3+4+5+6+7=28.答案:28,4.一切奇數(shù)都不能被2整除,2100+1是奇數(shù),所以2100+1不能被2整除,其演繹推理的“三段論”的形式為________.答案:一切奇數(shù)都不能被2整除,……(大前提),2100+1是奇數(shù),……(小前提),∴2100+1不能被2整除.……(結(jié)論),5.函數(shù)f(x)由下表定義:若a1=1,a2=5,an+2=f(an)(n∈N+),則a2011的值是________.解析:∵a1=1,a2=5,an+2=f(an)(n∈N+),a3=f(a1)=f(1)=3,∴a4=f(a2)=f(5)=1,a5=f(a3)=f(3)=5,由此可知,數(shù)列{an}是以3為周期的數(shù)列,∴a2011=a6703+1=a1=1,故應(yīng)填1.答案:1,1.歸納推理的特點(diǎn):(1)歸納是依據(jù)特殊現(xiàn)象推斷出一般現(xiàn)象,因而由歸納所得的結(jié)論超越了前提所包含的范圍.(2)歸納的前提是特殊的情況,所以歸納是立足于觀察、經(jīng)驗(yàn)或試驗(yàn)的基礎(chǔ)之上的.2.歸納推理的一般步驟:(1)通過觀察個別情況發(fā)現(xiàn)某些相同本質(zhì).(2)從已知的相同性質(zhì)中推出一個明確表述的一般性命題.,解:在{an}中,a1=1,a2==,a3===,a4==,…,所以猜想{an}的通項(xiàng)公式an=.證明如下:因?yàn)閍1=1,an+1=,所以,即-,所以是以=1為首項(xiàng),公差為的等差數(shù)列,所以,所以通項(xiàng)公式an=.,【例1】在數(shù)列{an}中,a1=1,an+1=,n∈N*,猜想這個數(shù)列的通項(xiàng)公式.思路點(diǎn)撥:根據(jù)已知條件和遞推關(guān)系,先求出數(shù)列的前幾項(xiàng),然后總結(jié)歸納其中的規(guī)律,寫出其通項(xiàng)公式.,變式1:(江蘇省高考命題研究專家原創(chuàng)卷)將正奇數(shù)按如圖所示的規(guī)律排列,則第21行從左向右的第5個數(shù)為________.,解析:前20行共有正奇數(shù)1+3+5+…+39=202=400(個),則第21行從左向右的第5個數(shù)是第405個正奇數(shù),所以這個數(shù)是2405-1=809.答案:809,1.類比推理是由特殊到特殊的推理,其一般步驟是:(1)找出兩類事物之的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想).2.類比是科學(xué)研究最普遍的方法之一.在數(shù)學(xué)中,類比是發(fā)現(xiàn)概念、方法、定理和公式的重要手段,也是開拓新領(lǐng)域和創(chuàng)造新分支的重要手段.類比在數(shù)學(xué)中應(yīng)用廣泛.?dāng)?shù)與式、平面與空間、一元與多元、低次與高次、相等與不等、有限與無限之間有不少結(jié)論,都是先用類比法猜想,而后加以證明的.,【例2】已知圓的方程是x2+y2=r2(r>0),則經(jīng)過圓上一點(diǎn)M(x0,y0)的切線方程為x0 x+y0y=r2.類比上述性質(zhì),可以得到橢圓+=1(a>b>0)類似的性質(zhì)為________.,思路點(diǎn)撥:由圓的切線方程與圓的方程的對比,猜想橢圓上一點(diǎn)的切線方程.,過橢圓上一點(diǎn)P(x0,y0)的切線方程為=1.答案:過橢圓=1(a>b>0)上一點(diǎn)P(x0,y0)的切線方程=1,解析:圓的性質(zhì)中,經(jīng)過圓上一點(diǎn)M(x0,y0)的切線方程就是將圓的方程中的一個x與y分別用M(x0,y0)的橫坐標(biāo)與縱坐標(biāo)替換.故可得橢圓=1類似的性質(zhì)為:,M2與點(diǎn)N1、N2,則三角形面積之比為:若從點(diǎn)O所作的不在同一個平面內(nèi)的三條射線OP、OQ和OR上分別有點(diǎn)P1、P2與點(diǎn)Q1、Q2和R1、R2,則類似的結(jié)論為:________.答案:,變式2:(江蘇靖江調(diào)研)若從點(diǎn)O所作的兩條射線OM、ON上分別有點(diǎn)M1、,,,,,,在數(shù)學(xué)中,合情推理為我們猜想、發(fā)現(xiàn)新的規(guī)律提供依據(jù)和方法,演繹推理則用于證明這些猜想、發(fā)現(xiàn)是否為真,但數(shù)學(xué)結(jié)論、證明思路等的發(fā)現(xiàn),主要靠合情推理,因此,我們不僅要學(xué)會證明,而且也要學(xué)會猜想.,【例3】如圖,已知O是△ABC內(nèi)任意一點(diǎn),連接AO,BO,CO,并延長交對邊于A′,B′,C′,則.這是平面幾何中的一個結(jié)論,其證明常采用“面積法”:.運(yùn)用類比推理猜想,對于空間中的四面體V—BCD,存在什么類似的結(jié)論,并用“體積法”證明.,思路點(diǎn)撥:將邊長擴(kuò)展為面積,將面積擴(kuò)展為體積,即可得到一個類似的結(jié)論和證法.,解:如圖,設(shè)O為四面體V—BCD內(nèi)任意一點(diǎn),連接VO,BO,CO,DO,并延長交對面于V′,B′,C′,D′.類比關(guān)系為.類比平面幾何中的“面積法”,可用“體積法”來證明.(其中h′,h為兩個四面體的高),同理,,變式3:在△ABC中,AB⊥AC,AD⊥BC于D,求證:,那么在四面體A-BCD中,類比上述結(jié)論,你能得到怎樣的猜想,并說明理由.,證明:圖(1)如圖(1)所示,由射影定理AD2=BDDC,AB2=BDBC,AC2=BCDC,∴又BC2=AB2+AC2,所以,猜想:類比AB⊥AC,AD⊥BC猜想四面體A-BCD中,AB、AC、AD兩兩垂直,AE⊥平面BCD,則=,如圖(2),連接BE交CD于F,連接AF.∵AB⊥AC,AB⊥AD,∴AB⊥平面ACD.而AF?面ACD,∴AB⊥AF.在Rt△ABF中,AE⊥BF,∴在Rt△ACD中,AF⊥CD,∴.∴故猜想正確.,1.合情推理主要包括歸納推理和類比推理.?dāng)?shù)學(xué)研究中,在得到一個新結(jié)論前,合情推理能幫助猜測和發(fā)現(xiàn)結(jié)論,在證明一個數(shù)學(xué)結(jié)論之前,合情推理常常能為證明提供思路與方向.2.合情推理的過程概括為:,【規(guī)律方法總結(jié)】,3.演繹推理是從一般的原理出發(fā),推出某個特殊情況的結(jié)論的推理方法,是由一般到特殊的推理,常用的一般模式是三段論.?dāng)?shù)學(xué)問題的證明主要通過演繹推理來進(jìn)行.4.合情推理僅是“合乎情理”的推理,它得到的結(jié)論不一定真.但合情推理常常幫助我們猜測和發(fā)現(xiàn)新的規(guī)律,為我們提供證明的思路和方法.而演繹推理得到的結(jié)論一定正確(前提和推理形式都正確的前提下);5.在數(shù)學(xué)中,證明命題的正確性都是使用演繹推理,而合情推理不能用作證明.,【例4】在平面上,設(shè)ha,hb,hc是三角形ABC三條邊上的高,P為三角形內(nèi)任一點(diǎn),P到相應(yīng)三邊的距離分別為Pa,Pb,Pc,我們可以得到結(jié)論:把它類比到空間,寫出三棱錐中的類似結(jié)論________.,【錯因分析】,從平面到空間的類比時缺乏對應(yīng)特點(diǎn)的分析,在三角形中是其內(nèi)一點(diǎn)到各邊的距離與該邊上的高的比值之和等于1,類比到空間就應(yīng)該是三棱錐內(nèi)一點(diǎn)到各個面的距離與該面上高的比值之和等于1.本題如果不考慮比值的特點(diǎn),就可能誤以為類比到空間后是面積之比等,從而得到一些錯誤的類比結(jié)論.,【答題模板】,解:設(shè)ha,hb,hc,hd分別是三棱錐A—BCD四個面上的高,P為三棱錐A—BCD內(nèi)任一點(diǎn),P到相應(yīng)四個面的距離分別為Pa,Pb,Pc,Pd,于是我們可以得到結(jié)論:,【狀元筆記】,類比推理是一種由此及彼的合情推理,“合乎情理”是這種推理的特征,一般的解答思路是進(jìn)行對應(yīng)的類比,如平面上的三角形對應(yīng)空間的三棱錐(四面體),平面上的面積對應(yīng)于空間的體積等.類比推理得到的結(jié)論不一定正確,故這類題目在得到類比的結(jié)論后,還要對類比結(jié)論的正確性作出證明,例如本題中在三角形中的結(jié)論是采用等面積法得到的,在三棱錐中就可以根據(jù)等體積法得到,這樣不但寫出了類比的結(jié)論,并且這個結(jié)論還是一個正確的結(jié)論.,1.若記號“”表示兩個實(shí)數(shù)a與b的算術(shù)平均數(shù)的運(yùn)算,即則兩邊均含有運(yùn)算符號“”和“+”,且對于任意三個實(shí)數(shù)a,b,c都能成立的一個等式可以是________.,分析:由于本題是探索性和開放性問題,問題的解決需要經(jīng)過一定的探索過程,并且答案不唯一.,2.指出下列推理的兩個步驟分別遵循哪種推理規(guī)則:如右圖,∵四邊形ABCD是平行四邊形,∴AB=CD,BC=AD.又∵△ABC和△CDA的三邊對應(yīng)相等,∴△ABC≌△CDA.分析:在推理論證的過程中,一個稍復(fù)雜的證明題經(jīng)常要由幾個三段論式才能完成,大前提通常省略不寫,或者寫在結(jié)論后面的括號內(nèi),小前提有時也可以省去,而采用某種簡明的推理格式.,解:這個證明過程包含著兩個三段論推理,在第一個推理中,暗示著一個一般性原理“平行四邊形的對邊相等”,這個已被證明了的一般定理是大前提,“四邊形ABCD是平行四邊形”是小前提,把一般性原理用于前面的具體情況,于是得到結(jié)論“AB=CD,BC=AD”;在第二個推理中,大前提是已被證明了的一般定理“有三邊對應(yīng)相等的兩個三角形全等”,小前提是AB=CD,BC=AD,AC=CA,結(jié)論是△ABC≌△CDA.,- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 蘇教版高三 數(shù)學(xué) 復(fù)習(xí) 課件 11.1 合情 推理 演繹
鏈接地址:http://zhongcaozhi.com.cn/p-3573083.html