4、
8.有6個相同的球,分別標有數(shù)字1,2,3,4,5,6,從中有放回的隨機取兩次,每次取1個球,甲表示事件“第一次取出的球的數(shù)字是1”,乙表示事件“第二次取出的球的數(shù)字是2”,丙表示事件“兩次取出的球的數(shù)字之和是8”,丁表示事件“兩次取出的球的數(shù)字之和是7”,則
A.甲與丙相互獨立
B.甲與丁相互獨立
C.乙與丙相互獨立
D.丙與丁相互獨立
二、選擇題:本題共4小題,每小題5分,共20分。在每小題給出的選項中,有多項符合題目要求。全部選對的得5分,部分選對的得2分,有選錯的得0分。
9.有一組樣本數(shù)據(jù)x1,x2,…,xn,由這組數(shù)據(jù)得到新樣本數(shù)據(jù)y1,y2,…,yn,其中
5、
yi=xi+c(i=1,2,…,n),c為非零常數(shù),則
A.兩組樣本數(shù)據(jù)的樣本平均數(shù)相同
B.兩組樣本數(shù)據(jù)的樣本中位數(shù)相同
C.兩組樣本數(shù)據(jù)的樣本標準差相同
D.兩組樣本數(shù)據(jù)的樣本極差相同
10.已知O為坐標原點,點P1(cosα,sinα),P2(cosβ,-sinβ),P3(cos(α+β),sin(α+β)),A(1,0),則
A.|OP1|=|OP2|
B. |AP1|=|AP2|
C.OAOP3=OP1OP2
D. OAOP1=OP2OP3
11.已知點P在圓(x?5)2+ (y?5)2=16上,點A(4,0),B(0,2),則
A.點P到直線AB的距離
6、小于10
B.點P到直線AB的距離大于2
C.當∠PBA最小時,|PB|=32
D.當∠PBA最大時,|PB|=32
12.在正三棱柱ABC-A1B1C1中,AB=AA1=1 ,點P滿足PB=λBC+μBB1,其中λ∈[0,1],μ∈[0,1],則
A.當λ=1時,△AB1P的周長為定值
B. 當μ=1時,三棱錐P-A1BC 的體積為定值
C. 當λ=12時,有且僅有一個點P,使得A1P⊥BP
D.當μ=12時,有且僅有一個點P,使得A1B⊥平面AB1P
三.選擇題:本題共4小題,每小題5分,共20分
13.已知函數(shù)f(x)=x3(a2x?2?x)是偶函數(shù),則a=_
7、___________
14.已知O為坐標原點,拋物線C:y2=2px(p>0)的焦點為F,P為C上一點,PF與x軸垂直,Q為x軸上一點,且PQ⊥OP,若|FQ|=6,則C的準線方程為____
15. 函數(shù)f(x) =|2x-l|-2lnx的最小值為
16. 某校學(xué)生在研究民間剪紙藝術(shù)時,發(fā)現(xiàn)此紙時經(jīng)常會沿紙的某條對稱軸把紙對折.規(guī)格為20dmXl2dm的長方形紙.對折1次共可以得到10dmX2dm . 20dmX6dm兩種規(guī)格的圖形,它們的面積之和S1=240 dm2,對折2次共可以得5dmX12dm ,10dmX6dm,20dmX3dm三種規(guī)格的圖形,它們的面積之和S2=
8、180dm2.以此類推.則對折4次共可以得到不同規(guī)格圖形的種數(shù)為______:如果對折n次,那么k=1nsk=______dm2
四、解答題:本題共6小題,共70分,解答應(yīng)寫出文字說明、證明過程或演算步驟。
17.(10分)已知數(shù)列{an}滿足a1=1,an+1an+1,n為奇數(shù)an+2,n為偶數(shù)
(1)記bn=a2n,寫出b1,b2,并求數(shù)列{bn}的通項公式;
(2)求{an}的前20項和
18.(12 分)
某學(xué)校組織"一帶一路”知識競賽,有A,B兩類問題?每位參加比賽的同學(xué)先在兩類問題中選擇類并從中隨機抽収一個問題冋答,若回答錯誤則該同學(xué)比賽結(jié)束;若 回答正確則
9、從另一類問題中再隨機抽取一個問題回答,無論回答正確與否,該同學(xué)比賽 結(jié)束.A類問題中的每個問題回答正確得20分,否則得0分:B類問題中的每個問題 回答正確得80分,否則得0分。
己知小明能正確回答A類問題的概率為0.8 ,能正確回答B(yǎng)類問題的概率為0.6 . 且能正確回答問題的概率與回答次序無關(guān)。
(1)若小明先回答A類問題,記X為小明的累計得分,求X的分布列:
(2)為使累計得分的期望最大,小明應(yīng)選擇先回答哪類問題?并說明理由。
19.(12分)
記△ABC的內(nèi)角A,B,C的對邊分別為a.,b.,c,已知b2=ac,點D在邊AC 上,BDsin∠ABC = asinC.
(1)證
10、明:BD = b:
(2)若AD = 2DC .求cos∠ABC.
20.(12分)
如圖,在三棱錐A-BCD中.平面ABD丄平面BCD,AB=AD.O為BD的中點.
(1)證明:OA⊥CD:
(2)若△OCD是邊長為1的等邊三角形.點E在 棱AD上. DE = 2EA .且二面角E-BC-D的大小為45,求三棱錐A-BCD的體積.
21.(12分)
在平面直角坐標系xOy中,己知點F1(-√17,0),F(xiàn)2(√17,0),點M滿足|MFt|-|MF2|=2.記M 的軌跡為C.
(1)求C的方程;
(2)設(shè)點T在直線x=12上,過T 的兩條直線分別交C于A,B兩點和P,Q兩點,且|TA|?|TB|=|TP|?|TQ|,求直線AB的斜率與直線PQ的斜率之和
22.(12分)
已知函數(shù)f(x)=x(1-lnx)
(1)討論f(x)的單調(diào)性
(2)設(shè)a,b為兩個不相等的正數(shù),且blna-alnb=a-b證明:2<1a+1b