數(shù)字圖像濾波方法比較.ppt
《數(shù)字圖像濾波方法比較.ppt》由會員分享,可在線閱讀,更多相關(guān)《數(shù)字圖像濾波方法比較.ppt(39頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
圖像濾波方法的比較,,實(shí)現(xiàn)的目標(biāo),噪聲: 三類噪聲:高斯噪聲、椒鹽 噪聲、隨機(jī)噪聲(2種) 濾波: 編寫8種濾波方法,實(shí)現(xiàn)了7個(gè):均值濾波、中值濾波、高斯濾波、KNN濾波、高通濾波、低通濾波(3*3)、最大均勻性平滑濾波 ;未實(shí)現(xiàn)的兩種:梯度倒數(shù)加權(quán)濾波及低通濾波( 5*5 ,7*7,9*9,11*11) 計(jì)算濾波時(shí)間:實(shí)現(xiàn)了計(jì)算濾波的處理時(shí)間,,彩色/灰色顯示 : 對原彩色圖像處理后的色彩選擇:彩色(部分程序)、灰色(實(shí)現(xiàn)) 菜單形式 : 實(shí)現(xiàn)了將所有命令控件整合為菜單形式,減少了控件占用界面的空間 圖片顯示 :6個(gè)圖片存放框,實(shí)現(xiàn)了將處理的圖片顯示在指定的圖片框,便于各種濾波方法的比較,圖像濾波的概念,圖像濾波,即在盡量保留圖像細(xì)節(jié)特征的條件下對目標(biāo)像的噪聲進(jìn)行抑制,是圖像預(yù)處理中不可缺少的操作,其處理效果的好壞將直接響到后續(xù)圖像處理和分析的有效性和可靠性。,基本原理,中值濾波 中值濾波是基于排序統(tǒng)計(jì)理論的一種能有效抑制噪聲的非線性信號處理技術(shù),中值濾波的基本原理是把數(shù)字圖像或數(shù)字序列中一點(diǎn)的值用該點(diǎn)的一個(gè)鄰域中各點(diǎn)值的中值代替,讓周圍的像素值接近的真實(shí)值,從而消除孤立的噪聲點(diǎn)。,均值濾波 均值濾波也稱為線性濾波,其采用的主要方法為領(lǐng)域平均法。線性濾波的基本原理是用均值代替原圖像中的各個(gè)像素值,即對待處理的當(dāng)前像素點(diǎn)(x,y),選擇一個(gè)模板,該模板由其近鄰的若干像素組成,求模板中所有像素的均值,再把該均值賦予當(dāng)前像素點(diǎn)(x,y),作為處理后圖像在該點(diǎn)上的灰度個(gè)g(x,y),即g(x,y)=1/m ∑f(x,y), m為該模板中包含當(dāng)前像素在內(nèi)的像素總個(gè)數(shù)。,高斯濾波 高斯濾波是一種線性平滑濾波,適用于消除高斯噪聲,廣泛應(yīng)用于圖像處理的減噪過程。通俗的講,高斯濾波就是對整幅圖像進(jìn)行加權(quán)平均的過程,每一個(gè)像素點(diǎn)的值,都由其本身和鄰域內(nèi)的其他像素值經(jīng)過加權(quán)平均后得到。 高斯濾波的具體操作是:用一個(gè)模板(或稱卷積、掩模)掃描圖像中的每一個(gè)像素,用模板確定的鄰域內(nèi)像素的加權(quán)平均灰度值去替代模板中心像素點(diǎn)的值。,K近鄰均值濾波,邊界保持濾波器的核心是確定邊界點(diǎn)與非邊界點(diǎn)。如圖所示,點(diǎn)1是黃色區(qū)域的非邊界點(diǎn),點(diǎn)2是藍(lán)色區(qū)域的邊界點(diǎn)。 在模板中,分別選出5個(gè)與點(diǎn)1或點(diǎn)2灰 度值最相近的點(diǎn)進(jìn)行計(jì)算,不影響效果。 換句話說,對非邊界點(diǎn)的影響不是很大, 但是對邊界點(diǎn)的影響就非常大。 其算法步驟為: 1) 以待處理像素為中心,作一個(gè)m*m的作用模板。 2)在模板中,選擇K個(gè)與待處理像素的灰度方差為最小的像素。 3)將這K個(gè)像素的灰度均值替換掉原來的像素值。,最大均勻性平滑濾波,最大均勻性平滑濾波是針對一些濾波方法在消除噪聲時(shí)引起邊緣退化的現(xiàn)象而提出的,其基本思想是,若圖像中的一個(gè)區(qū)域含有邊緣,它的灰度方差必定較大。該方法采用了9種不同形狀的模板,1個(gè)正方形模板,4個(gè)對稱的五邊形模板,4個(gè)對稱的六邊形模板,用各模板內(nèi)的灰度方差作為各個(gè)區(qū)域不均勻性的測試,以最為均勻的區(qū)域灰度均值作為被處理點(diǎn)的像素值。,梯度倒數(shù)加權(quán)平均法濾波,梯度倒數(shù)加權(quán)法平滑基于如下的假設(shè):在一幅離散圖像中,相鄰區(qū)域的變化大于區(qū)域內(nèi)部的變化,在同一區(qū)域中中間像素的變化小于邊緣像素的變化。梯度值正比于鄰近像素灰度級差值,也就是說在圖像變化緩慢區(qū)域,梯度值小,反之則大。而取梯度倒數(shù)大小與梯度相反,因此,以梯度倒數(shù)作權(quán)重因子,則區(qū)域內(nèi)部的鄰點(diǎn)權(quán)重就大于邊緣近旁或區(qū)域外的鄰點(diǎn)。即該種平滑其貢獻(xiàn)上要來自區(qū)域內(nèi)部的像素,平滑后圖像的邊緣和細(xì)節(jié)不會受到明顯的損害。,高通空域?yàn)V波,高通空域?yàn)V波可以增強(qiáng)圖像的高頻成分而不改變圖像的低頻成分。這種情況下,相對來說,削弱了圖像的低頻成分。因?yàn)閳D像的邊緣或線條與圖像中的高頻分量相對應(yīng),高通濾波可以讓高頻分量順利通過,使圖像的邊緣輪廓變得清楚。,,低通空域?yàn)V波,低通空域?yàn)V波是一種保留圖像的低頻成分,減少圖像的高頻成分的處理方法,有的稱之為消噪聲掩膜法。因?yàn)閳D像噪聲常常以高頻、隨機(jī)的形式表現(xiàn)出來,大面積的背景區(qū)和亮度漸變區(qū)域則屬低頻成分。 低通空域?yàn)V波以卷積方法進(jìn)行。 卷積方法實(shí)質(zhì)是一種加權(quán)求和的過程。選擇某種形狀的鄰域,將鄰域中的每個(gè)像素與卷積核中的對應(yīng)元素相乘,乘積求和的結(jié)果即為模板中心像素的新值,卷積核中的元素稱為加權(quán)系數(shù)。,濾波器性能的評價(jià),評價(jià)的方法和標(biāo)準(zhǔn) 定性評價(jià)和定量評價(jià)相結(jié)合 1 均值的保留能力 2 斑點(diǎn)噪聲的濾除能力 3 邊緣的保持能力 4 線和點(diǎn)目標(biāo)的保持能力 5 自然的視覺效果 6 效率和實(shí)現(xiàn)的復(fù)雜度,高斯噪聲,,,,,,,,,高斯噪聲濾波效果分析,在目前的這幾種濾波方法中,從自然視覺效果來看,較好的有高斯濾波、KNN濾波;均值濾波比中值濾波較好;而最大均勻性平滑濾波的邊緣保持能力較差,高通、低通適中。,椒鹽噪聲,,,,,,,,,,,,,,,,,椒鹽噪聲濾波效果分析,對于椒鹽噪聲,從視覺效果上看,中值濾波比均值濾波較好,中值濾波對斑點(diǎn)的濾除力較高,最大均勻性平滑濾波和KNN平滑濾波次之;均值濾波和低通濾波的線條和點(diǎn)目標(biāo)的邊緣都受到了一定程度的模糊,最大均勻性平滑濾波對邊界的抹平尤為嚴(yán)重;高斯濾波和低通濾波效果差不多。,隨機(jī)噪聲,,,,,,,,隨機(jī)噪聲濾波效果分析,從視覺上看,雖然最大均勻性平滑濾波的圖像在亮度上與源圖像較接近,但其邊緣保留能力卻較差,高通濾波、高斯和低通濾波在線條和邊緣上相差不大,亮度上高通較亮,低通和高斯接近。而中值濾波的邊緣和細(xì)節(jié)部分保留得較好。,濾波效率分析,在相同的電腦下,相同的一幅照片濾波效率如下表的數(shù)據(jù)記錄: 整體上看,3*3低通濾波、中值濾波速度較快;均值、梯度、高斯、高通濾波效率次之;最大均勻性平滑濾波較慢,KNN濾波效率次之 對于同一種濾波,不同噪聲的處理效率也不一樣,如均值濾波對于隨機(jī)噪聲濾波效率較高、而高斯濾波對于高斯噪聲的處理效率較高,高通濾波則對椒鹽濾波效率高些,實(shí)現(xiàn)的復(fù)雜度分析,均值濾波器和中值濾波器的算法較簡單 由于梯度倒數(shù)加權(quán)平均法濾波器、最大均勻性平滑濾波器和KNN濾波器要進(jìn)行局域參數(shù)的統(tǒng)計(jì),所以算法較為復(fù)雜 高斯、高通、低通濾波器的算法劇中。,總結(jié),由于所編寫的濾波方法有限,且不同的噪聲產(chǎn)生原因不同,每種濾波器對不同的噪聲濾波效果不一樣以及處理速度不同,所以沒有所謂的最好的濾波器,只有相對較好的濾波。選擇濾波的時(shí)候要根據(jù)具體的濾波綜合要求來選擇較好濾波器。,,謝謝各位,- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 數(shù)字圖像 濾波 方法 比較
鏈接地址:http://zhongcaozhi.com.cn/p-2832056.html