《解直角三角形及其應(yīng)用》教案 (省一等獎(jiǎng)) 4

上傳人:小*** 文檔編號(hào):149430814 上傳時(shí)間:2022-09-07 格式:DOC 頁(yè)數(shù):7 大?。?33KB
收藏 版權(quán)申訴 舉報(bào) 下載
《解直角三角形及其應(yīng)用》教案 (省一等獎(jiǎng)) 4_第1頁(yè)
第1頁(yè) / 共7頁(yè)
《解直角三角形及其應(yīng)用》教案 (省一等獎(jiǎng)) 4_第2頁(yè)
第2頁(yè) / 共7頁(yè)
《解直角三角形及其應(yīng)用》教案 (省一等獎(jiǎng)) 4_第3頁(yè)
第3頁(yè) / 共7頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《《解直角三角形及其應(yīng)用》教案 (省一等獎(jiǎng)) 4》由會(huì)員分享,可在線閱讀,更多相關(guān)《《解直角三角形及其應(yīng)用》教案 (省一等獎(jiǎng)) 4(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 解直角三角形 教學(xué)目標(biāo) ( 一)知識(shí)與能力 穩(wěn)固直角三角形中銳角的三角函數(shù),學(xué)會(huì)解關(guān)于坡度角和有關(guān)角度的問(wèn)題. (二)方法與過(guò)程: 逐步培養(yǎng)學(xué)生分析問(wèn)題解決問(wèn)題的能力,進(jìn)一步滲透數(shù)形結(jié)合的數(shù)學(xué)思想和方法. (三)情感、態(tài)度與價(jià)值觀: 培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí);滲透數(shù)學(xué)來(lái)源于實(shí)踐又反過(guò)來(lái)作用于實(shí)踐的辯證唯物主義觀點(diǎn). 教學(xué)重點(diǎn):能熟練運(yùn)用有關(guān)三角函數(shù)知識(shí). 教學(xué)難點(diǎn):解決實(shí)際問(wèn)題. 教學(xué)疑點(diǎn):株距指相鄰兩樹間的水平距離,學(xué)生往往理解為相鄰兩樹間的距離而造成錯(cuò)誤. 教學(xué)過(guò)程 1.創(chuàng)設(shè)情境,導(dǎo)入新課. 例 1 同學(xué)們,如果你是修建三峽大壩的工程師,現(xiàn)在有這樣一個(gè)問(wèn)題請(qǐng)

2、你解決:如圖6-33 水庫(kù)大壩的橫斷面是梯形,壩頂寬 6m,壩高 23m,斜坡 AB 的坡度 i=1∶3,斜坡 CD 的坡度 i=1∶,求斜坡 AB 的坡面角α, 壩 底寬 AD 和斜坡 AB 的長(zhǎng)(精確到 0.1m) . 2.介紹概念:坡度與坡角 教師講解:解直角三角形有廣泛的應(yīng)用,解決問(wèn)題時(shí),?要根據(jù)實(shí)際情況靈活運(yùn)用相關(guān) 知識(shí).例如,當(dāng)我們要測(cè)量如圖大壩的高度 h 時(shí),只要測(cè)出仰角α和大壩的水平寬度 L,就 能算出 h=Ltanα.但是,當(dāng)我們要測(cè)量如課本圖 28.2-10 所示的山 高 h 時(shí),問(wèn)題就不那么 簡(jiǎn)單了.這是由于不能很方便地得到仰角α和山坡長(zhǎng)度 L. 圖

3、 28.2-9  圖 28.2-10 與測(cè)壩高相比,測(cè)山高的困難在于:壩坡是“直〞的,而山坡是“曲〞的.怎樣 解決 這樣的問(wèn)題呢? 我們?cè)O(shè)法“化曲為直,以直代曲〞.我們可以把山坡“化整為零〞地劃分為一些小段, 課本圖 28.2-11 表示其中一局部小段.劃分小段時(shí),注意使每一小段上的山坡近似是“直〞 的 ,可以量出這段坡長(zhǎng) L ,測(cè)出相應(yīng)的仰角α,這樣就可以算出這段山坡的高度 h =L sin 1 1 1 α. 圖 28.2-11 在每個(gè)小段上,我們都構(gòu)造出直角三角形,利用上面的方法分別算出各段山坡的高度 h ,h ,…….

4、1 2 然后我們?cè)佟胺e零為整〞,把 h ,h ,…相加,于是得到山高 h. 1 2 以上解決問(wèn)題中所用的“化整為零,積零為整〞“化 曲為直,以直代曲〞的做法,就 是高等數(shù)學(xué)中微積分的根本思想,它在數(shù)學(xué)中有重要地位,在今后的學(xué)習(xí)中,你會(huì)更多地了 解這方面的內(nèi)容. 3. 自主探究,解決問(wèn)題 例 2  如右圖,纜車行駛線與水平線間的夾角α=30°,β=45°.?小明乘纜車上山,從 A 到 B,再?gòu)?B 到 D 都走了 200 米〔即 AB=BD=200 米〕,?請(qǐng)根據(jù)所給的數(shù)據(jù)計(jì)算纜車垂直上升 的距離.〔計(jì)算結(jié)果保存整數(shù),以下數(shù)據(jù)供選用: s

5、in47°≈0.7314,cos47?°≈0.6820, tan47°≈1.0724〕 分析:纜車垂直上升的距離分成兩段:BC 與 DF.分別在 ABC 和 Rt△DBF?中求出 BC 與 DF,兩者之和即為所求. 解:在 ABC 中,AB=200 米,∠BAC=α=30°, ∴BC=AB·sinα=200sin30°=100〔米〕. 在 Rt△BDF 中,BD=200 米,∠DBF=β47°, ∴DF=BD·sinβ=200·sin47°≈200×0.7314=146.28 〔米〕. ∴BC+DF=100+146.28=246.28〔米〕. 答:纜車

6、垂直上升了. 說(shuō)明:解直角三角形在實(shí)際生活中的應(yīng)用,是中考考查的重點(diǎn),也是考查的熱點(diǎn).要解 決好這類問(wèn)題:一是要合理地構(gòu)造適宜的直角三角形;?二是要熟記特殊角的三角函數(shù)值; 三是要有很好的運(yùn)算能力和分析問(wèn)題的能力. 4.穩(wěn)固練習(xí) 教材練習(xí) 2 引導(dǎo)學(xué)生回憶前述例題,進(jìn)行總結(jié),以培養(yǎng)學(xué)生的概括能力. 1.弄清俯角、仰角、株距 、坡度、坡角、水平距離、垂直距離、水位等概念的意義,明確 各術(shù)語(yǔ)與示意圖中的什么元素對(duì)應(yīng),只有明確這些概念,才能恰當(dāng)?shù)匕褜?shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué) 問(wèn)題. 2.認(rèn)真分析題意、畫圖并找出要求的直角三角形,或通過(guò)添加輔助線構(gòu)造直角三角形來(lái)解 決問(wèn)題. 3.選

7、擇適宜的邊角關(guān)系式,使計(jì)算盡可能簡(jiǎn)單,且不易出錯(cuò). 4.按照題中的精確度進(jìn)行計(jì)算,并按照題目中要求的精確度確定答案以及注明單位. 利用土埂修筑一條渠道,在埂中間挖去深為米的一塊(圖 6-35 陰影局部是挖去局部),渠道 內(nèi)坡度為 1∶,渠道底面寬 BC 為米,求: ①橫斷面(等腰 梯形)ABCD 的面積; ②修一條長(zhǎng)為 100 米的渠道要挖去的土方數(shù). [教學(xué)反思] 學(xué)生對(duì)展開圖通過(guò)各種途徑有了一些了解,但仍不能把平面與立體很好的結(jié)合;在遇 到問(wèn)題時(shí),多數(shù)學(xué)生不愿意自己探索,都要尋求幫助。在今后的教學(xué)中,我會(huì)不斷的鉆研探 索,使我的課堂真正成為學(xué)生學(xué)習(xí)的樂園。

8、 在本節(jié)課的教學(xué)中,我始終堅(jiān)持以引導(dǎo)為起點(diǎn),以問(wèn)題為主線,以能力培養(yǎng)為核心,遵 照教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的教學(xué)原那么;通過(guò)師生雙邊活動(dòng),通過(guò)對(duì)單元的 復(fù)習(xí),使學(xué)生對(duì)本單元的知識(shí)系統(tǒng)化,重點(diǎn)知識(shí)突出化,能力培養(yǎng)階梯化;在選擇題目時(shí)注 意了以基此題為主,少量思考性較強(qiáng)的題目為輔,兼顧了不同層次學(xué)生的不同要求。 本節(jié)課的教學(xué)活動(dòng),主要是讓學(xué)生通過(guò)觀察、動(dòng)手操作,熟悉長(zhǎng)方體、正方體的展開圖 以及圖形折 疊后的形狀。教學(xué)時(shí),我讓每個(gè)學(xué)生帶長(zhǎng)方體或正方體的紙盒 ,每個(gè)學(xué)生都剪 一剪,并展示所剪圖形的形狀。由于剪的方法不同,展開圖的形狀也可能是不

9、同的。學(xué)生在 剪、拆盒子過(guò)程中,很容易把盒子拆散了,無(wú)法形成完整的展開圖,就要求適當(dāng)進(jìn)行指導(dǎo)。 通過(guò)動(dòng)手操作,動(dòng)腦思考,集體交流,不僅提高了學(xué)生的空間思維能力,而且在情感上每位 學(xué)生 都獲得了成功的體驗(yàn),建立自信心。接著,我利用可操作材料,體會(huì)展開圖與長(zhǎng)方體、 正方體的聯(lián)系;通過(guò)立體與平面的有機(jī)結(jié)合,開展學(xué)生的空間觀念。這樣由淺入深、由表及 里地使學(xué)生逐步達(dá)教學(xué)目標(biāo)的要求:閉上眼睛想象展開或折疊的過(guò)程,促進(jìn)學(xué)生建立表象, 幫助學(xué)生理解概念,開展空間觀念。 24.1 圓 (第 3 課時(shí)) 教學(xué)內(nèi)容 1.圓周角的概念. 2.圓周角定理:在同圓或等圓中,

10、同弧或等弧所對(duì)的圓周角相等,?都等于這條弦所對(duì) 的圓心角的一半. 推論:半圓〔或直徑〕所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑及其它們的 應(yīng)用. 教學(xué)目標(biāo) 1.了解圓周角的概念. 2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,?都等于這條 弧所對(duì)的圓心角的一半. 3.理解圓周角定理的推論:半圓〔或直徑〕所對(duì)的圓周角是直角,90?°的圓周角所對(duì) 的弦是直徑. 4.熟練掌握?qǐng)A周角的定理及其推理的靈活運(yùn)用. 設(shè)置情景,給出圓周角概念,探究這些圓周角與圓心角的關(guān)系,運(yùn)用數(shù)學(xué)分類思想給予 邏輯證明定理,得出推導(dǎo),讓學(xué)生活動(dòng)證明定理推論的正確性,最后運(yùn)用定理及其推

11、導(dǎo)解決 一些實(shí)際問(wèn)題. 重難點(diǎn)、關(guān)鍵 1.重點(diǎn):圓周角的定理、圓周角的定理的推導(dǎo)及運(yùn)用它們解題. 2.難點(diǎn):運(yùn)用數(shù)學(xué)分類思想證明圓周角的定理. 3.關(guān)鍵:探究圓周角的定理的存在. 教學(xué)過(guò)程 一、復(fù)習(xí)引入 〔學(xué)生活動(dòng)〕請(qǐng)同學(xué)們口答下面兩個(gè)問(wèn)題. 1.什么叫圓心角? 2.圓心角、弦、弧之間有什么內(nèi)在聯(lián)系呢? 老師點(diǎn)評(píng):〔1〕我們把頂點(diǎn)在圓心的角叫圓心角. 〔2〕在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,?那么它們 所對(duì)的其余各組量都分別相等. 剛剛講的,頂點(diǎn)在圓心上的角,有一組等量的關(guān)系,如果頂點(diǎn)不在圓心上,它在其它的 位置上?如在圓周上,是否還存在一些

12、等量關(guān)系呢?這就是我們今天要探討, 要研究,要解決的問(wèn)題. 二、探索新知 問(wèn)題:如下圖的⊙O,我們?cè)谏溟T游戲中,設(shè) E、F 是球門,?設(shè)球員們只能在  EF  所在 的⊙O 其它位置射門,如下圖的 A、B、C 點(diǎn).通過(guò)觀察,我們可以發(fā)現(xiàn)像∠EAF、∠EBF、∠ ECF 這樣的角,它們的頂點(diǎn)在圓上,?并且兩邊都與圓相交的角叫做圓周角. 現(xiàn)在通過(guò)圓周角的概念和度量的方法答復(fù)下面的問(wèn)題. 1.一個(gè)弧上所對(duì)的圓周角的個(gè)數(shù)有多少個(gè)? 2.同弧所對(duì)的圓周角的度數(shù)是否發(fā)生變化? A C 3.同弧上的圓周角與圓心角有什么關(guān)系? 〔學(xué)生分組討論〕提問(wèn)二

13、、三位同學(xué)代表發(fā)言.  O 老師點(diǎn)評(píng): 1.一個(gè)弧上所對(duì)的圓周角的個(gè)數(shù)有無(wú)數(shù)多個(gè).  B 2.通過(guò)度量,我們可以發(fā)現(xiàn),同弧所對(duì)的圓周角是沒有變化的. 3.通過(guò)度量,我們可以得出,同弧上的圓周角是圓心角的一半. 下面,我們通過(guò)邏輯證明來(lái)說(shuō)明“同弧所對(duì)的圓周角的度數(shù)沒有變化, ? 并且 A  D 它的度數(shù)恰好等于這條弧所對(duì)的圓心角的度數(shù)的一半.〞 〔1〕設(shè)圓周角∠ABC 的一邊 BC 是⊙O 的直徑,如下圖 ∵∠AOC 是△ABO 的外角  B O  C ∴∠AOC=∠ABO+∠BAO ∵OA=OB ∴∠ABO=∠BAO ∴

14、∠AOC=∠ABO ∴∠ABC= 1 2  ∠AOC 〔2〕如圖,圓周角∠ABC 的兩邊 AB、AC 在一條直徑 OD 的兩側(cè),那么∠ABC= ∠AOC 嗎?請(qǐng)同學(xué)們獨(dú)立完成這道題的說(shuō)明過(guò)程. 1 2 老師點(diǎn)評(píng):連結(jié) BO 交⊙O 于 D 同理∠AOD 是△ABO 的外角,∠COD 是△BOC 的外角,?那么就有∠AOD=2∠ABO,∠DOC=2∠CBO,因此∠AOC=2∠ABC. 〔3〕如圖,圓周角∠ABC 的兩邊 AB、AC 在一條直徑 OD 的同側(cè),那么∠ABC= ∠AOC 嗎?請(qǐng)同學(xué)們獨(dú)立完成證明. 1 2 老師點(diǎn)評(píng):連

15、結(jié) OA、OC,連結(jié) BO 并延長(zhǎng)交⊙O 于 D,那么∠AOD=2∠ABD,∠COD=2∠CBO, 而∠ABC=∠ABD-∠CBO= 1 1 1 ∠AOD- ∠COD= ∠AOC 2 2 2 現(xiàn)在,我如果在畫一個(gè)任意的圓周角∠AB′C,?同樣可證得它等于同弧上圓心角一半, 因此,同弧上的圓周角是相等的. 從〔1〕、〔2〕、〔3〕,我們可以總結(jié)歸納出圓周角定理: 在同圓或等圓中,同弧等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半. 進(jìn)一步,我們還可以得到下面的推導(dǎo): 半圓〔或直徑〕所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑. 下面,我們通過(guò)這個(gè)定理和推

16、論來(lái)解一些題目. 例 1.如圖,AB 是⊙O 的直徑,BD 是⊙O 的弦,延長(zhǎng) BD 到 C,使 AC=AB,BD 與 CD 的大小有什么關(guān)系?為什么? 分析:BD=CD,因?yàn)?AB=AC,所以這個(gè)△ABC 是等腰,要證明 D 是 BC 的中點(diǎn), ?只要連結(jié) AD 證明 AD 是高或是∠BAC 的平分線即可. 解:BD=CD 理由是:如圖 24-30,連接 AD ∵AB 是⊙O 的直徑 ∴∠ADB=90°即 AD⊥BC 又∵AC=AB ∴BD=CD 三、穩(wěn)固練習(xí) 1.教材 P92 思考題. 2.教材 P93 練習(xí). 四、應(yīng)用拓展 例 2.如圖 ABC

17、內(nèi)接于⊙O,∠A、∠B、∠C 的對(duì)邊分別設(shè)為 a,b,c,⊙O 半徑為 R, 求證: a b c = = =2R. sin A sin B sin C a b c a b c 分析:要證明 = = =2R,只要證明 =2R, =2R, =2R, sin A sin B sin C sin A sin B sin C a b c 即 sinA= ,sinB= ,sinC= ,因此,十清楚顯要在直角三 2 R 2 R 2 R 角形中進(jìn)行. 證明:連接 CO 并延長(zhǎng)交⊙O 于 D,連接 DB ∵CD 是直徑 ∴∠DBC=90° 又∵∠A=∠D 在

18、Rt△DBC 中,sinD= BC a ,即 2R= DC sin A b c 同理可證: =2R, =2R sin B sin C a b c ∴ = = =2R sin A sin B sin C 五、歸納小結(jié)〔學(xué)生歸納,老師點(diǎn)評(píng)〕 本節(jié)課應(yīng)掌握: 1.圓周角的概念; 2.圓周角的定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,?都相等這條弧所 對(duì)的圓心角的一半; 3.半圓〔或直徑〕所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑. 4.應(yīng)用圓周角的定理及其推導(dǎo)解決一些具體問(wèn)題. 六、布置作業(yè) 1.教材 P95 綜合運(yùn)用 9、10、 [教學(xué)反思]

19、 學(xué)生對(duì)展開圖通過(guò)各種途徑有了一些了解,但仍不能把平面與立體很好的結(jié)合;在遇 到問(wèn)題時(shí),多數(shù)學(xué)生不愿意自己探索,都要尋求幫助。在今后的教學(xué)中,我會(huì)不斷的鉆研探 索,使我的課堂真正成為學(xué)生學(xué)習(xí)的樂園。 本節(jié)課的教學(xué)活動(dòng),主要是讓學(xué)生通過(guò)觀察、動(dòng)手操作,熟悉長(zhǎng)方體、正方體的展開圖 以及圖形折 疊后的形狀。教學(xué)時(shí),我讓每個(gè)學(xué)生帶長(zhǎng)方體或正方體的紙盒 ,每個(gè)學(xué)生都剪 一剪,并展示所剪圖形的形狀。由于剪的方法不同,展開圖的形狀也可能是不同的。學(xué)生在 剪、拆盒子過(guò)程中,很容易把盒子拆散了,無(wú)法形成完整的展開圖,就要求適當(dāng)進(jìn)行指導(dǎo)。 通過(guò)動(dòng)手操作,動(dòng)腦思考,集體交流,不僅提高了學(xué)生的空間思維能力,而且在情感上每位 學(xué)生 都獲得了成功的體驗(yàn),建立自信心。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!