(通用版)2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題跟蹤檢測(二)基本初等函數(shù)、函數(shù)與方程 理(重點生含解析)
《(通用版)2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題跟蹤檢測(二)基本初等函數(shù)、函數(shù)與方程 理(重點生含解析)》由會員分享,可在線閱讀,更多相關(guān)《(通用版)2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題跟蹤檢測(二)基本初等函數(shù)、函數(shù)與方程 理(重點生含解析)(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、(通用版)2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題跟蹤檢測(二)基本初等函數(shù)、函數(shù)與方程 理(重點生,含解析)
1.若m∈,a=lg m,b=lg m2,c=lg3m,則a,b,c的大小關(guān)系是( )
A.a(chǎn)0,∴l(xiāng)g3m>lg m,即c>a.又m∈,∴0 2、),b=f (log25),c=f (2m),則a,b,c的大小關(guān)系是( )
A.a(chǎn)
3、 2+>0恒成立,
∴f (x)在(-∞,-1)上單調(diào)遞增,在(-1,+∞)上單調(diào)遞增,排除C、D;
當(dāng)x→-∞時,2x→0,→1,∴f (x)→1,排除B,選A.
4.已知函數(shù)f (x)=則不等式log2x-(log4x-1)f (log3x+1)≤5的解集為( )
A. B.[1,4]
C. D.[1,+∞)
解析:選C 由不等式log2x-(log4x-1)f (log3x+1)≤5,得
或
解得1≤x≤4或 4、=( )
A.1 B.2
C.3 D.4
解析:選B ∵f (x)=+,∴f (-x)=+=+,∴f (x)+f (-x)=+++=3.∵loga(+1)=-loga(-1),∴f (loga(+1))+f (loga(-1))=3,∴f (loga(-1))=2.故選B.
6.(2019屆高三·貴陽模擬)20世紀(jì)30年代,為了防范地震帶來的災(zāi)害,里克特(C.F.Richter)制定了一種表明地震能量大小的尺度,就是使用測震儀衡量地震能量的等級,地震能量越大,測震儀記錄的地震曲線的振幅就越大,這就是我們常說的里氏震級M,其計算公式為M=lg A-lg A0,其中A是被測地震的 5、最大振幅,A0是“標(biāo)準(zhǔn)地震”的振幅.已知5級地震給人的震感已經(jīng)比較明顯,則7級地震的最大振幅是5級地震的最大振幅的( )
A.10倍 B.20倍
C.50倍 D.100倍
解析:選D 根據(jù)題意有l(wèi)g A=lg A0+lg 10M=lg(A0·10M),所以A=A0·10M,則=100.故選 D.
7.(2018·菏澤一模)已知loga 6、因此只有A正確.故選A.
8.已知實數(shù)x,y滿足ax 7、,x3>y3恒成立.故選D.
9.(2018·廣元模擬)已知函數(shù)f (x)=ex,g(x)=ln+,對任意a∈R,存在b∈(0,+∞)使f (a)=g(b),則b-a的最小值為( )
A.2-1 B.e2-
C.2-ln 2 D.2+ln 2
解析:選D 令t=ea,可得a=ln t,令t=ln+,可得b=2,
則b-a=2-ln t,令h(t)=2e-ln t,
則h′(t)=2e-.
顯然,h′(t)是增函數(shù),觀察可得當(dāng)t=時,h′(t)=0,
故h′(t)有唯一零點,
故當(dāng)t=時,h(t)取得最小值,即b-a取得最小值為2e-ln =2+ln 2,故選D.
8、10.已知函數(shù)f (x)是定義在R上的奇函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,若 9、,0)∪(0,+∞)上的函數(shù)h(x)為偶函數(shù),且當(dāng)x>0時,h(x)=g(x),若h(t)>h(4),則實數(shù)t的取值范圍為( )
A.(-4,0) B.(0,4)
C.(-2,0)∪(0,2) D.(-4,0)∪(0,4)
解析:選D 因為f (x)=x2-mx(m>0),所以f (x)=2-,因為f (x)在區(qū)間[0,2]上的最小值為g(m),所以當(dāng)0 10、h(x)在(0,+∞)上單調(diào)遞減.因為定義在(-∞,0)∪(0,+∞)上的函數(shù)h(x)為偶函數(shù),且h(t)>h(4),所以h(|t|)>h(4),所以0<|t|<4,所以即從而-4 11、.設(shè)g(x)=2x+1,h(x)=x2+2x+2,當(dāng)x≤-1時,0 12、在[4,+∞)上是增函數(shù),所以f ′(x)≥f ′(4)=32ln 2-10>0,所以函數(shù)f (x)=2x+1-x2-2x-2在[4,+∞)上是增函數(shù),所以f (x)≥f (4)=32-16-8-2=6>0,即a>4時,不滿足對任意的x∈Z且x∈(-∞,a),f (x)≤0恒成立.綜上,實數(shù)a的取值范圍是(-∞,4],故選D.
法二:將問題轉(zhuǎn)化為2x+1≤x2+2x+2對于任意的x∈Z且x∈(-∞,a)恒成立后,在同一個平面直角坐標(biāo)系中分別作出函數(shù)y=2x+1,y=x2+2x+2的圖象如圖所示,根據(jù)兩函數(shù)圖象的交點及位置關(guān)系,數(shù)形結(jié)合即可分析出實數(shù)a的取值范圍是(-∞,4],故選D.
13 13、.函數(shù)f (x)=ln(x2-2x-8)的單調(diào)遞增區(qū)間是________.
解析:由x2-2x-8>0,得x>4或x<-2.因此,函數(shù)f (x)=ln(x2-2x-8)的定義域是(-∞,-2)∪(4,+∞).注意到函數(shù)y=x2-2x-8在(4,+∞)上單調(diào)遞增,由復(fù)合函數(shù)的單調(diào)性知,f (x)=ln(x2-2x-8)的單調(diào)遞增區(qū)間是(4,+∞).
答案:(4,+∞)
14.李華經(jīng)營了甲、乙兩家電動轎車銷售連鎖店,其月利潤(單位:元)分別為L甲=-5x2+900x-16 000,L乙=300x-2 000(其中x為銷售輛數(shù)),若某月兩連鎖店共銷售了110輛,則能獲得的最大利潤為______ 14、__元.
解析:設(shè)甲連鎖店銷售x輛,則乙連鎖店銷售(110-x)輛,故利潤L=-5x2+900x-16 000+300(110-x)-2 000=-5x2+600x+15 000=-5(x-60)2+33 000,∴當(dāng)x=60時,有最大利潤33 000元.
答案:33 000
15.若函數(shù)f (x)與g(x)的圖象關(guān)于直線y=x對稱,函數(shù)f (x)=-x,則f (2)+g(4)=________.
解析:法一:∵函數(shù)f (x)與g(x)的圖象關(guān)于直線y=x對稱,又f (x)=-x=2x,∴g(x)=log2x,
∴f (2)+g(4)=22+log24=6.
法二:∵f (x)=- 15、x,∴f (2)=4,即函數(shù)f (x)的圖象經(jīng)過點(2,4),∵函數(shù)f (x)與g(x)的圖象關(guān)于直線y=x對稱,∴函數(shù)g(x)的圖象經(jīng)過點(4,2),∴f (2)+g(4)=4+2=6.
答案:6
16.(2018·福州模擬)設(shè)函數(shù)f (x)=則滿足f (x2-2)>f (x)的x的取值范圍是________________________.
解析:由題意x>0時,f (x)單調(diào)遞增,故f (x)>f (0)=0,而x≤0時,x=0,
故若f (x2-2)>f (x),則x2-2>x,且x2-2>0,
解得x>2或x<-.
答案:(-∞,-)∪(2,+∞)
17.如圖,在第一象 16、限內(nèi),矩形ABCD的三個頂點A,B,C,分別在函數(shù)y=logx,y=x,y=x的圖象上,且矩形的邊分別平行于兩坐標(biāo)軸,若點A的縱坐標(biāo)是2,則點D的坐標(biāo)是________.
解析:由2=logx可得點A,由2=x可得點B(4,2),因為4=,所以點C的坐標(biāo)為,所以點D的坐標(biāo)為.
答案:
18.已知函數(shù)f (x)=|log3x|,實數(shù)m,n滿足0 17、所以0 18、0+,3+log2x0).由點A在函數(shù)y=log24x的圖象上,得log2[4(x0+)]=3+log2x0=log28x0,則4(x0+)=8x0,x0=,即點B的橫坐標(biāo)是.
答案:
20.已知函數(shù)f (x)=在[0,1]上單調(diào)遞增,則a的取值范圍為________.
解析:令2x=t,t∈[1,2],則y=在[1,2]上單調(diào)遞增.當(dāng)a=0時,y=|t|=t在[1,2]上單調(diào)遞增顯然成立;當(dāng)a>0時,函數(shù)y=,t∈(0,+∞)的單調(diào)遞增區(qū)間是[,+∞),此時≤1,即0
19、綜上可得a的取值范圍是[-1,1].
答案:[-1,1]
二、強(qiáng)化壓軸考法——拉開分
1.設(shè)函數(shù)f (x)=log4x-x,g(x)=logx-x的零點分別為x1,x2,則( )
A.x1x2=1 B.0 20、1x2<1.故選B.
2.(2018·唐山模擬)若函數(shù)f (x)=-x+λ在[-1,1]上有兩個不同的零點,則λ的取值范圍為( )
A.[1,) B.(-,)
C.(-,-1] D.[-1,1]
解析:選C 函數(shù)f (x)=-x+λ在[-1,1]上有兩個不同的零點等價于y=與y=x-λ的圖象在[-1,1]上有兩個不同的交點.y=,x∈[-1,1]為圓x2+y2=1的上半圓.如圖,當(dāng)直線y=x-λ過點(0,1)時兩函數(shù)圖象有兩個交點,此時λ=-1,當(dāng)直線y=x-λ與圓x2+y2=1上半圓相切時,λ=-.所以λ的取值范圍為(-,-1].故選C.
21、3.已知f (x)是定義在R上的奇函數(shù),且x>0時,f (x)=ln x-x+1,則函數(shù)g(x)=f (x)-ex(e為自然對數(shù)的底數(shù))的零點個數(shù)是( )
A.0 B.1
C.2 D.3
解析:選C 當(dāng)x>0時,f (x)=ln x-x+1,f ′(x)=-1=,所以x∈(0,1)時,f ′(x)>0,此時f (x)單調(diào)遞增;x∈(1,+∞)時,f ′(x)<0,此時f (x)單調(diào)遞減.因此,當(dāng)x>0時,f (x)max=f (1)=ln 1-1+1=0.
根據(jù)函數(shù)f (x)是定義在R上的奇函數(shù)作出函數(shù)y=f (x)與y=ex的大致圖象如圖所示,由圖象可知函數(shù)y=f (x)與 22、y=ex的圖象有兩個交點,所以函數(shù)g(x)=f (x)-ex(e為自然對數(shù)的底數(shù))有2個零點.
4.(2018·涼山模擬)設(shè)函數(shù)f (x)=若函數(shù)f (x)的圖象上有四個不同的點A,B,C,D同時滿足:①A,B,C,D,O(原點)五點共線;②共線的這條直線斜率為-3,則a的取值范圍是( )
A.(2,+∞) B.(-∞,-4)
C.(-∞,-2) D.(4,+∞)
解析:選A 由題意知f (x)的圖象與直線y=-3x有4個交點.
令ln x-2x2=-3x,可得ln x=2x2-3x,
作出y=ln x與y=2x2-3x的圖象如圖所示.
由圖象可知兩函數(shù)圖象在y軸右側(cè)有 23、兩個交點,
∴當(dāng)x>0時,f (x)的圖象與直線y=-3x有兩個交點,
∴當(dāng)x<0時,f (x)的圖象與直線y=-3x有兩個交點.
∴a+=-3x在(-∞,0)上有兩解.
即3x2+ax+1=0在(-∞,0)上有兩解.
∴解得a>2.故選A.
5.(2019屆高三·西安八校聯(lián)考)已知函數(shù)f (x)=若方程f (x)-ax=0恰有兩個不同的實根,則實數(shù)a的取值范圍是( )
A. B.
C. D.(-∞,0]∪
解析:選B 方程f (x)-ax=0有兩個不同的實根,即直線y=ax與函數(shù)f (x)的圖象有兩個不同的交點.作出函數(shù)f (x)的圖象如圖所示.
當(dāng)x>1時,f 24、 (x)=ln x,得f ′(x)=,設(shè)直線y=kx與函數(shù)f (x)=ln x(x>1)的圖象相切,切點為(x0,y0),則==,解得x0=e,則k=,即y=x是函數(shù)f (x)=ln x(x>1)的圖象的切線,當(dāng)a≤0時,直線y=ax與函數(shù)f (x)的圖象有一個交點,不合題意;當(dāng)01)的圖象有兩個交點,但與y=x+1(x≤1)也有一個交點,這樣就有三個交點,不合題意;當(dāng)a≥時,直線y=ax與函數(shù)f (x)的圖象至多有一個交點,不合題意;只有當(dāng)≤a<時,直線y=ax與函數(shù)f (x)的圖象有兩個交點,符合題意.故選B.
6.(2018·濰坊模擬)已知 25、函數(shù)f (x)=(x2-3)ex,若關(guān)于x的方程f 2(x)-mf (x)-=0的不同的實數(shù)根的個數(shù)為n,則n的所有可能值為( )
A.3 B.1或3
C.3或5 D.1或3或5
解析:選A 由f (x)=(x2-3)ex,得f ′(x)=(x2+2x-3)ex=(x+3)(x-1)ex,令f ′(x)>0,得x<-3或x>1,令f ′(x)<0,得-3 26、示.
令t=f (x),則f 2(x)-mf (x)-=0可轉(zhuǎn)化為t2-mt-=0,Δ=m2+>0,且t=時,2-m·-=--<0,所以方程有兩個不同的實數(shù)根t1,t2,所以t1t2=-=×(-2e),不妨設(shè)t1>0,所以當(dāng)t1>時,-2e 27、<-2e,由f (x)的圖象可知t2=f (x)有0個根,t1=f (x)有3個不同的實數(shù)根,所以方程f 2(x)-mf (x)-=0有3個不同的實數(shù)根.綜上所述,方程有3個不同的實數(shù)根.
7.(2018·南寧模擬)設(shè)函數(shù)f (x)是定義在R上的偶函數(shù),且f (x+2)=f (2-x),當(dāng)x∈[-2,0]時,f (x)=x-1,若在區(qū)間(-2,6)內(nèi)關(guān)于x的方程f (x)-loga(x+2)=0(a>0且a≠1)有且只有4個不同的根,則實數(shù)a的取值范圍是( )
A. B.(1,4)
C.(1,8) D.(8,+∞)
解析:選D ∵f (x+2)=f (2-x),∴f (x+4 28、)=f (2+(x+2))=f (2-(x+2))=f (-x)=f (x),∴函數(shù)f (x)是一個周期函數(shù),且T=4.又∵當(dāng)x∈[-2,0]時,f (x)=x-1=()-x-1,∴當(dāng)x∈[0,2]時,f (x)=f (-x)=()x-1,于是x∈[-2,2]時,f (x)=()|x|-1,根據(jù)f (x)的周期性作出f (x)的圖象如圖所示.若在區(qū)間(-2,6)內(nèi)關(guān)于x的方程f (x)-loga(x+2)=0有且只有4個不同的根,則a>1且y=f (x)與y=loga(x+2)(a>1)的圖象在區(qū)間(-2,6)內(nèi)有且只有4個不同的交點,∵f (-2)=f (2)=f (6)=1,∴對于函數(shù)y= 29、loga(x+2)(a>1),當(dāng)x=6時,loga8<1,解得a>8,即實數(shù)a的取值范圍是(8,+∞),所以選 D.
8.已知在區(qū)間(0,2]上的函數(shù)f (x)=且g(x)=f (x)-mx在區(qū)間(0,2]內(nèi)有且僅有兩個不同的零點,則實數(shù)m的取值范圍是( )
A.∪ B.∪
C.∪ D.∪
解析:選A 由函數(shù)g(x)=f (x)-mx在(0,2]內(nèi)有且僅有兩個不同的零點,得y=f (x),y=mx在(0,2]內(nèi)的圖象有且僅有兩個不同的交點.當(dāng)y=mx與y=-3在(0,1]內(nèi)相切時,mx2+3x-1=0,Δ=9+4m=0,m=-,結(jié)合圖象可得當(dāng)-
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 指向核心素養(yǎng)發(fā)展的高中生物學(xué)1輪復(fù)習(xí)備考建議
- 新課程新評價新高考導(dǎo)向下高三化學(xué)備考的新思考
- 新時代背景下化學(xué)高考備考策略及新課程標(biāo)準(zhǔn)的高中化學(xué)教學(xué)思考
- 2025屆江西省高考政治二輪復(fù)習(xí)備考建議
- 新教材新高考背景下的化學(xué)科學(xué)備考策略
- 新高考背景下的2024年高考化學(xué)二輪復(fù)習(xí)備考策略
- 2025屆高三數(shù)學(xué)二輪復(fù)習(xí)備考交流會課件
- 2025年高考化學(xué)復(fù)習(xí)研究與展望
- 2024年高考化學(xué)復(fù)習(xí)備考講座
- 2025屆高考數(shù)學(xué)二輪復(fù)習(xí)備考策略和方向
- 2024年感動中國十大人物事跡及頒獎詞
- XX教育系統(tǒng)單位述職報告教育工作概述教育成果展示面臨的挑戰(zhàn)未來規(guī)劃
- 2025《增值稅法》全文解讀學(xué)習(xí)高質(zhì)量發(fā)展的增值稅制度規(guī)范增值稅的征收和繳納
- 初中資料:400個語文優(yōu)秀作文標(biāo)題
- 初中語文考試專項練習(xí)題(含答案)