帶式輸送機傳動裝置設(shè)計 (2)【3張cad圖紙+文檔全套資料】
喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請放心下載,,有疑問咨詢QQ:414951605或者1304139763 ======================== 喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請放心下載,,有疑問咨詢QQ:414951605或者1304139763 ========================
中國地質(zhì)大學(xué)長城學(xué)院
本科畢業(yè)設(shè)計外文資料翻譯
系 別: 工程技術(shù)系
專 業(yè): 機械設(shè)計制造及其自動化
姓 名: 紀(jì)珊珊
學(xué) 號: 05208302
2012年 3 月 20日
TBM隧道挖掘機仿真運動
虛擬現(xiàn)實是一種多功能性、互動性、浸沒感的技術(shù)。作為一種先進(jìn)的工程
設(shè)計技術(shù)、虛擬現(xiàn)實技術(shù)(VRT)已經(jīng)被廣泛地應(yīng)用于大型礦山機械設(shè)計和制造。
該系統(tǒng)是基于Mockup2000i2 軟件的。本文將對隧道掘進(jìn)機(TBM)進(jìn)行詳細(xì)的
分析。此外,TMB 的運動仿真(功能)已經(jīng)可以在Mockup2002i2 軟件上成功運行了。第一步,我們使用CATIA 軟件設(shè)計出TBM 的各個部分,并在CATIA 中完成裝配。第二步,使用THEOREM 軟件將CATIA 環(huán)境下的TBM 轉(zhuǎn)換成能在DIVISIONMOCKUP2000i2 環(huán)境中打開的格式。
在傳統(tǒng)的機械設(shè)計和制造過程中,首先要完成設(shè)計過程和制定計劃,然后進(jìn)行產(chǎn)品設(shè)計。在設(shè)計工作完成之后,需要制造實體樣機進(jìn)行測試。為了檢驗設(shè)計成果,有時這些測試甚至具有破壞性。當(dāng)找到了實體樣機的缺陷時,工程師們需要檢查設(shè)計方案,重新制造樣機。然后,工程師們可以進(jìn)一步進(jìn)行檢驗。只有通過多次周而復(fù)始的設(shè)計修正,包括設(shè)計、生產(chǎn)樣機、測試,最終產(chǎn)品的性能才會滿足用戶的要求。設(shè)計制造的過程耗時久,該問題在設(shè)計復(fù)雜機械系統(tǒng)時更為突出。傳統(tǒng)的設(shè)計過程,不僅拖延設(shè)計周期,而且也無法適應(yīng)市場的快速響應(yīng)機制。因此,傳統(tǒng)意義上的機械設(shè)計制造,會增加企業(yè)設(shè)計和生產(chǎn)成本,并且推遲了新產(chǎn)品進(jìn)入市場的時間。虛擬現(xiàn)實技術(shù)(VRT)是一門多功能、交互性強和可浸入的技術(shù),它能形成產(chǎn)品的仿真圖像和模型的三維圖像。計算機設(shè)計出的產(chǎn)品模型叫做數(shù)字化實體(DMU)。通過操作者和諸多外圍設(shè)備的相互配合,可現(xiàn)實復(fù)雜產(chǎn)品的顯示、動態(tài)分析和裝配仿真。它可以產(chǎn)生視覺、聽覺以及其他反饋,讓人感覺和真實世界一樣。作為一種先進(jìn)的設(shè)計理念,虛擬現(xiàn)實技術(shù)在機械設(shè)計與制造領(lǐng)域?qū)嵱眯詮?。作為大型的礦山機械設(shè)備,隧道掘進(jìn)機(TBM)包含諸多領(lǐng)域的科學(xué)技術(shù),例如機械、電力、液壓控制等。TBM 的設(shè)計和分析涉及了機械、電子、液壓和控制等技術(shù)領(lǐng)域,需要有一個綜合的開發(fā)和分析平臺。傳統(tǒng)的樣機開發(fā)模式,不能很好地滿足像TBM 一樣復(fù)雜的產(chǎn)品。用虛擬樣機技術(shù)開發(fā)、設(shè)計TMB,能有效地克服傳統(tǒng)的研究和設(shè)計方法上的缺陷,降低開發(fā)成本,縮短測試周期,加快TBM 研究和發(fā)展過程。
在CATIA 軟件的環(huán)境中,零件設(shè)計模塊通常結(jié)合物理、幾何學(xué)特性構(gòu)造TBM 三維參數(shù)模型。TBM 的裝配主要包括切割輪、盾尾、切割機、螺旋輸送機、出泥口、切割環(huán)、驅(qū)動盒、支撐環(huán)、中心回轉(zhuǎn)接頭等組件。在構(gòu)造TBM 模型的過程中,為了在Mockup 環(huán)境下仿真的方便,必須選擇合適的坐標(biāo)系,使之與TBM 裝備體的大方向一致。我們在CATIA 環(huán)境下完成了TBM 各部分零件的制造,進(jìn)行組裝后完成TBM 完整原型的設(shè)計。圖2 即為TBM 在CATIA 環(huán)境下的三維實體模型。
當(dāng)模型文件格式用 Theorem10.0 軟件轉(zhuǎn)換成Mockup2000i2 能使用的格式之后,我們就可以建立初步的虛擬原型了。為了能快速瀏覽TBM 的相關(guān)主視圖,Mockup2000i2 軟件中的攝像頭和地標(biāo)必須創(chuàng)建快捷方式。同時,我們進(jìn)行材料和光線的設(shè)置以便得到更真實的效果。
為了讓觀察者在坐標(biāo)中保持方向感,我們?yōu)門BM 添加了網(wǎng)格背景。同時增加了運動和裝配等動態(tài)效果,使得TBM 原型看起來更真實。在Mockup2000i2 工具欄中使用運動干涉檢測,可以進(jìn)一步顯示TBM 的內(nèi)部結(jié)構(gòu),并檢查各部分裝配體之間的干涉情況。圖3為創(chuàng)建的TBM 的虛擬樣機,
TBM 的工作順序:切割輪轉(zhuǎn)動→32 個圓筒活塞缸向前推進(jìn),出泥口打開,并開啟螺旋運輸機(一個周期之后)→切割輪停止運行,關(guān)上出泥口;分部安裝機械將第一個部件抬升,移動,翻轉(zhuǎn)并推到正確的位置→推動與第一個部件相對應(yīng)的圓筒活塞向后縮進(jìn),并沖擊已固定第一個部件→分部安裝機械開始對第二個部件進(jìn)行操作(步驟同上)。當(dāng)一個裝配周期完成之后,支撐各個部件的圓筒活塞就開始下一個循環(huán)工作。轉(zhuǎn)換過程中的日期是從CATIA 系統(tǒng)獲得并用于Mockup2000i2 的翻譯,在此期間,所有由CATIA 系統(tǒng)創(chuàng)建的約束信息是無效的。由于新的約束需要在運動仿真測試前確定,所以,我們要為所有的TBM 移動零件定義約束。
在Mockup2000i2 中創(chuàng)建的性能函數(shù)必須用于增加支點,以及簡單運動仿真系統(tǒng)中旋轉(zhuǎn)中心軸的旋轉(zhuǎn)和直線運動的方向。同時,功能仿真能夠被屬性所執(zhí)行、添加事件和編輯操作參數(shù)。最后,將所有的運動與接下來的動作聯(lián)系在一起,以實現(xiàn)每個零件在工作順序每部分的連續(xù)動作。此外,在零件屬性的高級選項中預(yù)先定義的熱鍵用來觸發(fā)零件功能模擬的運動。在運動仿真中創(chuàng)建的簡單運動部分有:切割輪的旋轉(zhuǎn),推動氣缸活塞的推進(jìn)運動,螺旋輸送機械中螺旋葉片的旋轉(zhuǎn)推進(jìn)運動,驅(qū)動箱和主軸承的轉(zhuǎn)動,出泥門的打開/關(guān)閉等。
對于具有復(fù)雜運動關(guān)系的零件,為了實現(xiàn)仿真,需要在裝配根目錄中創(chuàng)建虛擬零件。根據(jù)仿真需要,許多子零件也需要創(chuàng)建在你剛創(chuàng)建的虛擬零件之下。對于剛創(chuàng)建的虛擬零件,為了實現(xiàn)零件的綜合運動仿真,將添加虛擬參數(shù)和虛擬事件,并編輯好參數(shù)。這里需要注意虛擬零件并不是真正的零件,所以需要指定運動零件的初始位置路徑。此外,需要在零件屬性的高級選項中定義熱鍵,來觸發(fā)虛擬零件的運動。在運動仿真中的綜合運動部分有: 五個片段的吊裝、平移、旋轉(zhuǎn),徑向運動;壁架中片段安裝機器的往復(fù)直線運動;片段安裝機器的快速定向圓周旋轉(zhuǎn)運動;氣缸活塞的提升和下降運動
隨著各種各樣的周邊設(shè)備,諸如立體眼鏡、手套系統(tǒng)、3D 鼠標(biāo)、顯示器 PC和動作捕捉器,我們可以進(jìn)入TBM 虛擬樣機的內(nèi)部任何地方進(jìn)行檢查。通過安裝使用干涉查詢工具,建立查詢的名字和查詢的類型, 我們可以測試各安裝組件之間有無沖突。
虛擬的TBM 樣機中添加了“*.WAV”格式的音頻文件,此外,還設(shè)置一個新的環(huán)境變量,這樣虛擬樣機在工作狀態(tài)中的聲音效果得到加強。
虛擬現(xiàn)實技術(shù)不僅是一種多功能的互動技術(shù),更是一種先進(jìn)的設(shè)計理念。使
用虛擬現(xiàn)實技術(shù)建立TBM 實際原型和進(jìn)行數(shù)字仿真,能夠為TBM 的優(yōu)化設(shè)計、飛
速發(fā)展和獨立創(chuàng)新,提供一種有效的新方法來開發(fā)新的產(chǎn)品。作為一種新的設(shè)計
技術(shù),VRT 可大大縮短產(chǎn)品開發(fā)周期,提高設(shè)計質(zhì)量,降低測試成本及減少開發(fā)成
本和開發(fā)風(fēng)險。
Virtual Prototype of the Tunnel Boring Machine andMovement Simulation
The virtual reality is a multi-functional, interactive and immersible technology. As an advanced engineering design technology, the virtual reality technology has been widely used in large mining machinery design and manufacturing. The system is based on DIVISION Mockup2000i2 software.Virtual prototype of the Tunnel Boring Machine (TBM) is studied in this paper.In addition, the movement simulation of TBM is completed in DIVISION Mockup2000i2. Firstly, CATIA software is adopted to build the parts of TBM.The TBM is assembled in CATIA too. Secondly, the THEOREM software is applied to convert the assembled model of TBM to another format which can be identified in DIVISION MOCKUP2000i2 software.
In order to make the TBM image living, life-like and easy to browse, the light of surface, virtual materials and landmark scenes are set up in DIVISION MOCKUP2000i2 software environment. All motion parameters of the parts are defined before the simulation. Then, the virtual movement simulation of TBM components is analyzed with the behaviors property of MOCKUP. The virtual movement of cutting wheel, screw conveyor machinery and the door of mud out are studied. The virtual movement of segments and segment erector machine are completed by setting up virtual parts and virtual event. Five segments are fixed accurately in a cycle. The relations and interference of the parts movement are examined simultaneity. The hotkey is defined before the simulation,which can trigger the continuous implementation of virtual motion.
In traditional mechanical design and manufacturing process, first of all, the concept of program design and plan demonstration will be completed, and then the product design is carried out. When the design has been completed, the physical prototype usually needs to be made for test. In order to verify the design, sometimes even these tests are destructive. When the defects in physical prototype were found out by experiment,the engineers need to modify the design and to make prototype again. And then, the engineers can verify the design further. Only through much more cycles which include of design, making physical prototype and testing, the product performance would meet the user’s requirement. This process of design and manufacturing is too long, especially for complex machinery systems. The traditional design process not only delay the design periods, but also unable to adapt to the market's rapid response mechanism. So with this traditional concept of the design and manufacture of machinery, it will increase the enterprises cost of design and manufacturing,and postpone the time of new products to enter market
The virtual reality technology is a multi-functional, interactive and immersible technology, which create a life-like image of the entire product and threedimensional figure of the whole model. The product model created in computer is called digital . With interaction between the user and a variety of peripheral equipment, it can be actualized for complex product’s displaying,kinematic analyzing and assemble simulation. The vision, hearing and other feedback information would be created, which make people same feeling as in real world. As an advanced design concept, Virtual reality technology is a practical means in the field of machinery design and manufacture.
As one of the large-scale mining machinery and equipment, Tunnel Boring Machine(TBM) includes many areas of science and technology, such as machine, electricity,hydraulic pressure and control etc. Designing and analyzing of the TBM relate to mechanical, electronic, hydraulic and control many technology areas, and need an integrated platform for development and analysis. The traditional development model of physical prototype can not meet a complex product, such as TBM. Virtual prototyping technology is applied to development and designing of TMB, which can effectively overcome the defects of traditional research and design model of the physical prototype, reduce development costs, shorten the test period,and accelerate research and development of TBM process .
Three-dimensional solid model of TBM built in the CATIA environment can be opened in the mockup2000i2 software's virtual environment after the model file has been transformed with Theorem10.0 software. Then the preliminary virtual prototype has been created.
In order to browse the relevant main view of the TBM quickly, CAMERAS and LANDMARKS in Mockup2000i2 software must be applied to establish shortcut icon of the view. At the same time, MATERIALS and LIGHTING should be selected so as to make the virtual prototype achieve effect of unfeigned image. To avoid spectators wildering position and direction in the infinite frame of axes, we must add grid to be the background of TBM as reference objects. Adding moving segments and assemblied segments, it could improve view and unfeigned sense of TBM. Using moving sections and interference query in Mockup2000i2 Tools can achieve dynamic section and interference checking, showing internal structures of TBM further, and checking components interference of sub-assembly.
The working sequence of TBM: the cutting wheel running→ pushing 32 cylinder pistons going ahead, door of mud out opening and screw conveyor machinery turning at 530 L. Li et al.The same time (after one cycle)→the cutting wheel stop running; then shutting the door of mud out; the segments erector machinery catches the first segments, hoisting,moving, turning and pushing it to the proper position→pushing cylinder pistons which are matching with the first segment fixed just going back, elongating and impacting the first fixed segments→the segment erector machinery fixes the second segment (go on in turn). After a cycle of segments been fixed, the pushing cylinder pistons supporting the segments just have been fixed, going ahead, starting another cycle.
During the conversion process where date is taken from the CATIA system and translated for use in Mockup2000i2, all constraint information created by the CATIA system is forfeited. New constrains will need to be placed before any movement simulation can be tested. So, we have to define all constrains for moving parts of TBM.
For the parts which have complex relations of motion, the virtual parts need to be created at the root directory of assembly in order to realize simulation. According to the needs of simulation, many children virtual parts would be created under the virtual parts you just created too. For the virtual parts just created, virtual behavior property and virtual event are added, and parameters are edited to realize composite motion simulation of parts. Notice the virtual parts are not real parts, so the initial position path of moving parts needs to be designated. Furthermore, the hot key must be defined to trigger movement of virtual parts in the advanced options of the part’s property.The composite motion parts in motion simulation are: the hoisting, translation,rotation, radial movement of the five segments; the linearity alternate motion of segment erector machinery in bracket; slewing ring rotary motion of segment erector machinery; the cylinder piston hoisting and down-turn movement. The following picture is the motion simulation of TBM’s virtual prototype in Mockup environment.
With a variety of peripheral equipment, such as stereo glasses, glove system, 3Dmouse,i-glasses PC and Flock of birds, we can enter the virtual prototype of TBM inside anywhere to inspect. Using interference queries in MOCKUP tools, setting up query name and query types, we can test collisions between sets of assemblies.
Audio files,”*.WAV”format, is added to the virtual prototype of TBM. In addition,a new Environment Variable is set. They enhance the sound effects of the virtual prototype in the working state.
Virtual Reality technology is not only a multi-functional interactive technology, but also an advanced design concepts. Using virtual reality technology to build TBM virtual prototype and doing digital simulation, can provide an effective new method to develop of new products for TBM’s optimal design, rapid development, and independent innovation. As a new designing technology, VRT can greatly shorten the product development periods, improve design quality, decrease test costs, and reducedevelopment costs and development risk.
收藏