頂置凸輪式汽油機配氣機構(gòu)設(shè)計研究【含4張CAD圖紙、說明書】
頂置凸輪式汽油機配氣機構(gòu)設(shè)計研究【含4張CAD圖紙、說明書】,含4張CAD圖紙、說明書,凸輪,汽油機,機構(gòu),設(shè)計,研究,鉆研,cad,圖紙,說明書,仿單
頂置凸輪式汽油機配氣機構(gòu)設(shè)計研究
摘要:以發(fā)動機的配氣機構(gòu)做為研究對象,并搭建頂置凸輪式汽油機配氣機構(gòu)模型,并對其進行優(yōu)化。運用CATIA等軟件對其進行了計算及應(yīng)力分析,得到凸輪型線等一系列數(shù)據(jù)。
氣門凸輪型線是氣門機構(gòu)的核心,氣體凸輪型線是優(yōu)化氣體分布設(shè)計的重要途徑。結(jié)論證明:優(yōu)質(zhì)的凸輪型線可以提高凸輪型線的性能。
關(guān)鍵詞:配氣機構(gòu);凸輪型線;優(yōu)化設(shè)計
I
Design and study of overhead CAM type gasoline engine
Abstract:As a research object, the engine's gas distribution mechanism is set up, and the model of the gas-engine distribution system is set up and optimized. Using software such as CATIA to calculate and stress analysis, award for a series of data such as CAM line.
The valve CAM line is the core of the valve mechanism, and the gas CAM line is an important way to optimize the distribution of gas. Conclusion: high quality CAM line can improve the performance of CAM line.
Key words: match air mechanism;CAM line;optimized design
目 錄
摘要 I
Abstract II
目錄 III
1 緒論 1
1.1 概述 1
1.2 配氣機構(gòu)的研究歷程 2
2 配氣機構(gòu)的總體布置以及工作原理 4
2.1 氣門的布置形式 4
2.2 凸輪軸的布置形式 4
2.3 凸輪軸的傳動方式 4
2.4 每缸氣門數(shù)及其排列方式 4
2.5 氣門間隙 5
2.6 配氣正時的介紹 5
2.7 工作的原理 5
2.8 本章小結(jié) 6
3 配氣機構(gòu)的零件、組件以及建模 7
3.1 CATIA軟件的介紹 7
3.2 氣門組 7
3.2.1 氣門 7
3.2.2 氣門座圈 13
3.2.3 氣門導(dǎo)管 13
3.3 氣門組的裝配 19
3.4 凸輪軸 20
3.4.1 凸輪型線設(shè)計 21
3.4.2 緩沖段設(shè)計 23
3.4.3 凸輪軸進排氣凸輪角度設(shè)計 23
3.4.4 基本段設(shè)計 24
3.4.5 挺柱 25
4 總結(jié)與展望 26
參 考 文 獻 27
致 謝 28
V
1 緒論
1.1 概述
發(fā)動機的重要的構(gòu)成部分-配氣機構(gòu)。組織的作用是什么?是通過氣缸的順序進行通風(fēng),一定時間打開和關(guān)閉排氣門,使氣瓶并排排出新鮮空氣。如何確定汽油機是否具有優(yōu)良的經(jīng)濟性,是否有優(yōu)秀的動力,是否有可靠的穩(wěn)定性,無噪音和振動,這取決于結(jié)構(gòu)的設(shè)計結(jié)構(gòu)。
氣門設(shè)計的質(zhì)量不但影響發(fā)動機的緊湊性以及制造和使用的價錢,并且還可以高速率地確定發(fā)動機的可靠性和耐久性。氣門設(shè)計是好還是差的發(fā)動機的能力都有極其重要的影響。
是按照發(fā)動機在每個氣缸中進行的工作循環(huán)或者點火的順序,將氣缸定期打開和關(guān)閉到排氣門中,使外界的能燃燒渾合氣或空氣及時進入氣缸,排氣可以實時從氣瓶中放出。充電因子可用于表示。充電指數(shù)越高,氣瓶中新鮮氣體和可進行燃燒的混合物的質(zhì)量越高。發(fā)動機的壓的力越大,冷暖越低,溫度越低,必定容量的氣體所占的重量越大,系數(shù)越高。但在現(xiàn)實工作中,壓的力,冷暖等都有不可控制的成分,是以充電系數(shù)的大小將小于1,大致在0.8-0.9之間。相比較配氣機構(gòu),期望能使進氣以及排氣的阻力有所下降,并且可以將進氣和排氣門打開并保持適當(dāng)?shù)臅r間段以允許足夠的進氣和排氣。
怎樣去設(shè)計才能使配氣機構(gòu)的性能變得更合理?其通風(fēng)性能達到良好,可以充分進入氣體,徹底排氣,時間越大,泵氣的損失越少,也具有正確的氣門正時。另外,配氣機構(gòu)動態(tài)性能好,工作平穩(wěn),沒有大的噪聲和振動,這表明隨動件運動加速度變化較大,正負加速度值差異不大。
比方,氣門的通過的能力,其實便是氣門位移定律的凸輪形狀??梢钥闯觯挥袣忾T能夠進行迅速的開啟與閉合才能增加面的大小,與此同時也會產(chǎn)生較大的慣性負荷以及加速度對于氣門的運動部件,在這個時候也會加劇沖擊和振動,其動態(tài)特性將會變差。是以,氣門的所必須的通過容量和組織的動態(tài)特征要求存在必然的問題,因此應(yīng)思量設(shè)計,如發(fā)動機旋轉(zhuǎn)速度,能力的要求以及尺寸的氣門剛度等,在凸輪輪廓的設(shè)計中要考慮。
氣門采取各類構(gòu)造情形,四沖程發(fā)動機采用氣門式配氣結(jié)構(gòu)。凸輪式的配氣機構(gòu)又可分為頂置凸輪式,中置凸輪式以及下置凸輪式如圖1-1所示。
圖1-1 配氣機構(gòu)
氣門不僅是氣流通過的渠道,也是燃燒室的其中之一,僅適用于前期低壓縮比內(nèi)燃機。它不緊湊,單元燃燒室體積的表面積,燃燒室的冷卻面大小,喪失熱量[1]。另外,進氣管道因為氣門側(cè)面的旋轉(zhuǎn)而增加,進入排氣阻力,但構(gòu)造不復(fù)雜,當(dāng)前僅適合于便宜的低功率汽油機。
為了減少入口和排氣流阻,增強通風(fēng)能力,將低壓縮比燃燒室變成高壓縮比燃燒室,加大燃燒的熱效能,降低熱消耗。氣門從氣缸體移動到氣缸蓋頂置氣門機構(gòu)的呈現(xiàn),很大的提高了內(nèi)燃機的功率和更實惠,普遍應(yīng)用于當(dāng)代發(fā)動機。
1.2 配氣機構(gòu)的研究歷程
作為發(fā)動機的重要組成部分,配氣機構(gòu)的研究工作由原來的簡單凸輪設(shè)計,氣門開發(fā)與氣門完全剛性運動計算,然后開發(fā)出整個機構(gòu)運動學(xué)習(xí)與動態(tài)綜合研究。二十世紀(jì)初以來,不少學(xué)者進行深切的學(xué)習(xí),對比國內(nèi)的認(rèn)識較晚,自20世紀(jì)60年代末開始全方位學(xué)習(xí)凸輪設(shè)計和動力學(xué)解析,研究之重是對凸輪線設(shè)計,多品質(zhì)動力學(xué)探究。
電子計算機的成長和試驗?zāi)芰Φ拈_辟為氣門動力學(xué)探究開拓了新的路子。操作PC機實行多程序選項,并預(yù)估氣門動力學(xué)能力現(xiàn)已變做一種具有實效和具有資本效益的手法。目前國際上有許多樣式的氣門設(shè)計軟件,并且有許多相似的軟件,軟件在算法速率上和準(zhǔn)確度上需要加強。
1.3 配氣機構(gòu)設(shè)計優(yōu)化的目的及其意義
科技的進步,機械類商品和設(shè)施也越來越高效率,精準(zhǔn),向著輕量化和自動化方向靠近。產(chǎn)物的構(gòu)造也變得麻煩起來,其能力的需要也越來越高,為了使產(chǎn)品能更好地工作,系統(tǒng)的構(gòu)造一定要有杰出的的靜態(tài)和動態(tài)特性。并且,該產(chǎn)品在運作中的所產(chǎn)生的會對環(huán)境污染,并且會工作人員的健康造成影響[2,3]。是以,必須從動靜兩方面來分析機械產(chǎn)品,在靜動兩方面滿足其特性和振動輕,噪聲小的機械構(gòu)造需求。這需要工程師在設(shè)計初期就能考慮到上述工程各個性能方面的問題,需要結(jié)合各方面的參數(shù)去進行研究以及計算。為達到節(jié)約成本的目的,加快動作,縮短時間,許多廠商將過去所做的軟件仿真做為這類設(shè)計試驗成功的關(guān)鍵因素。
發(fā)動機是機動車中的動態(tài)零件,其所有的能力直接使機動車的運行狀態(tài)和性能受到影響。發(fā)動機朝著大功率輕量化發(fā)展,使其剛度降低,也就增加了發(fā)動機的振動和構(gòu)造產(chǎn)生的噪聲,這種振動將直接對發(fā)動機的使用壽命產(chǎn)生作用。所以一定要從動態(tài)的角度去對發(fā)動機進行全方面的研究,將設(shè)計的最終目標(biāo)定位為它的動態(tài)特征。
氣門是發(fā)動機的主要部件之一,高溫及高壓下常會出現(xiàn)氣門在工作,導(dǎo)致氣門經(jīng)常會出現(xiàn)損壞[4,5]。配氣機構(gòu)對實惠性能,穩(wěn)定性能以及環(huán)保性能都會產(chǎn)生作用影響。
2 配氣機構(gòu)的總體布置以及工作原理
2.1 氣門的布置形式
發(fā)動機運作的時候,正時齒輪轉(zhuǎn)動會帶動曲軸來使凸輪軸動起來。當(dāng)凸輪軸轉(zhuǎn)到凸輪的凸出那塊時,搖桿在推桿和調(diào)節(jié)螺釘繞搖臂擺動下,使氣門彈簧被壓縮以離開氣門。當(dāng)凸輪突起與挺柱分離時,氣門將在氣門彈簧的影響下,使氣門封閉。
四沖程發(fā)動機每次做完一個運轉(zhuǎn)周期,曲軸繞兩周,氣缸進入排氣門打開一下,然后凸輪軸只繞一圈。曲軸和凸輪軸的轉(zhuǎn)速比為2:1。頂部空氣分配機構(gòu)。
2.2 凸輪軸的布置形式
凸輪軸式空氣分配機構(gòu)的最大的優(yōu)勢是凸輪軸靠近曲軸,而且不會很復(fù)雜地與一對齒輪一并使用。但是它的短處是部件長,傳動鏈長,整體的剛度不強。在高速發(fā)動機中,可能會損壞氣門的運動和氣門打開和關(guān)閉的時間。在這種情況下,適用于頂置凸輪式配氣機構(gòu)。
2.3 凸輪軸的傳動方式
凸輪軸氣門的中心與大多數(shù)使用圓柱正時齒輪傳動。平時,曲軸和凸輪軸中間的傳動只有一對定時齒輪,若要有需要,加裝中央齒輪[6]。為了平滑嚙合,減少噪音,定時齒輪使用螺旋齒輪。在中小型動力發(fā)動機中,曲軸正時齒輪由鋼制成,而凸輪正時齒輪是以鑄鐵或膠合木做成的,大大降低了噪聲。在這種情況下,請使用齒輪傳動。
2.4 每缸氣門數(shù)及其排列方式
通用發(fā)動機用于每缸體積氣門,即排成一排結(jié)構(gòu)。要能夠凸出改進氣缸的透風(fēng),盡量地加長氣門的長度,尤其是進氣門的長度。但是,因為燃燒室的大小,最大氣門直徑通常沒有氣缸直徑的二分之一大。當(dāng)氣缸有比較大的直徑時候,平均活塞旋轉(zhuǎn)速度與較高,每個氣缸排成一排氣門不可以擔(dān)保優(yōu)良的透風(fēng)質(zhì)量。是以,采取四通道,乃至五道的構(gòu)造,總進氣量通過較大的區(qū)域,充氣系數(shù)較高。此外,采用四個氣門,并且要恰當(dāng)?shù)臏p少氣門升程,緩解電力的配氣機構(gòu),多氣門汽油機也對提高HC和CO排放性能有好處。
當(dāng)每個氣缸一對氣門時,為了使布局不復(fù)雜,大部分氣門沿著縱向軸線的使用方法并成一排。以這種做法,相同名稱的挨著的兩個氣瓶應(yīng)該會使用氣道,這將會使氣缸蓋的冷卻均勻更好。發(fā)動機進入排氣通道普遍放在車身兩邊,避免放氣時變熱。以這種方式,沿著凸輪軸的軸線連續(xù)使用兩個氣門。
2.5 氣門間隙
當(dāng)發(fā)動機運行時,由于溫度上升,氣門會膨脹。要是氣門和它的傳輸中的冷卻狀態(tài)沒有縫或縫太小,在熱狀態(tài)下,氣門與驅(qū)動部件的熱張力一定會導(dǎo)致氣門鎖閉松動,使電源降落很大并很難開始氣門間隙的大小通常由發(fā)動機制造商依照測試決定。在冷態(tài)下,進氣門縫隙普遍為0.23-0.3mm,排氣門縫隙為0.3-0.35mm。若是縫隙太小,發(fā)動機應(yīng)該在熱狀態(tài)下泄漏,導(dǎo)致電力不足乃至氣門損壞。若是氣門縫隙太大了,傳動部件和氣門中的沖擊與氣門座中的沖擊,會使氣門打開氣缸的連續(xù)時長,降低出氣和出氣條件惡化。在這種情況下,進氣門間隙選擇為0.25mm。排氣門間隙選擇0.3mm。
2.6 配氣正時的介紹
氣門正時是基于活塞的工作行程來裝配排氣門的打開時長?;钊男谐虖纳现裹c到作用點的底部,進氣門敞開,排氣;壓縮沖程:活塞從下限截止到頂部作用點,進入排氣門鎖閉;停止運動點的末端,進入排氣門關(guān)閉;排氣行程,活塞從底點到頂部的作用點,進入氣門,排氣門敞開。
2.7 工作的原理
配氣機構(gòu)的正時是進氣門和排氣門的實際打開和關(guān)閉時間[7]。如圖2-1所示:
圖2-1 曲軸扭矩環(huán)形圖
當(dāng)排氣沖程靠近末了時,活塞達到上止點,即曲軸移動到曲柄離開上死點的地方,進氣門開始打開,直到活塞達到終點,曲軸在曲軸停止超過下死點位置后,當(dāng)曲軸轉(zhuǎn)動到一個角度時,曲軸關(guān)閉。以這種方法,整體進氣沖程保持的時長就等于曲軸角度。一般為10°-30°,角度一般為40°-80°[10]。
相同地,在接近活塞末了的工作行程達到最后時間時,排氣門將進行打開,早期打開角一般為40°-80°。整個排氣行程后,活塞位于上止點后,排氣門閉合,排氣門閉合的延時角度一般為10°-30°。在這個排出氣體的整個過程中所堅持的時間就與曲軸角度相接近。
2.8 本章小結(jié)
通過認(rèn)識氣門的一般常識,對氣門具有初階的認(rèn)識,認(rèn)識了它的種類,能力,需求。熟悉本章內(nèi)容,分析和設(shè)計的基礎(chǔ)。并通過引入氣門的時機及其工作原理,氣門定時有了更好的理解,熟悉本章內(nèi)容,對后續(xù)分析設(shè)計起到了根本的作用。
3 配氣機構(gòu)的零件、組件以及建模
3.1 CATIA軟件的介紹
CATIA是由一家叫達索的法國公司所生產(chǎn)和研發(fā)的產(chǎn)品。是解決PLM問題的重要結(jié)構(gòu)之一,它的作用是為廠商設(shè)計出他們未來所需要的產(chǎn)品,并集中項目前階段,項目的設(shè)計,同時能對其進行模擬分析,最后還能進行組裝和維護的過程。
3.2 氣門組
a) 氣門組應(yīng)該同氣門貼合在一起,同樣的是也應(yīng)該與氣門座這樣,在高溫,冷卻和潤滑前提下運作不佳,可以具有充沛的強度和抗磨性,耐蝕腐性。為此,氣門組的以下設(shè)計要求;
b) 氣門可以跟隨導(dǎo)管中的氣門軸線進行往復(fù)直線運動;
c) 氣門彈簧的兩頭應(yīng)直立于氣門桿的中心線,以確保氣門頭不會在氣門座上偏轉(zhuǎn);
d) 氣門彈簧應(yīng)具有充沛的彈性和剛度,以確保氣門可快速鎖閉并緊緊地壓在氣門座上;
e) 彈簧座的固定應(yīng)可靠。
3.2.1 氣門
氣門由頭部和氣門桿組成[8],[9]。氣門密封錐角,一般為45°。
任何開口處的開口面積f能夠被以為是氣門處的氣體通道的最小橫截面面積。在平時使用的氣門升程不是這種狀況下,一般覺得f是小底部的氣門頭的最小直徑,底部的直徑,為測量表面積。
氣門的功能是特別針對將燃油輸入發(fā)動機和排氣排放,傳統(tǒng)發(fā)動機每缸就有一個進氣門和排氣門,這種構(gòu)造不是很復(fù)雜。低消耗,維修簡便,速度能力更好,不足是電力不好加強,特別是當(dāng)高速透風(fēng)效率低時,能力較弱。想要加強進,排氣效率,此時多采取多氣門科技,經(jīng)??吹降氖敲總€氣缸都配有四個氣門,4缸總共是16個氣門,現(xiàn)在常會見到在汽車數(shù)據(jù)“16V”中,發(fā)動機共有16個氣門。該多氣門構(gòu)造不復(fù)雜變成緊湊的燃燒室,噴射器安插在中心,使油氣混雜物能夠更快速,更平均地燃燒,氣門的質(zhì)量和打開的程度得當(dāng)降低,氣門打開或關(guān)閉更快。
圖3-1 氣門截面示意圖
上圖表顯示了氣門的基本尺寸及其通道橫截面積:
上圖示氣門口的基本尺寸及其通道斷面積:
(3-1)
(3-2)
(3-3)
(3-4)
為氣門密封錐角,取。?從上述公式能夠看出,在氣門尺寸恒定的狀況下,氣門通道橫截面積與氣門升程直接相關(guān)。?因為它們功能都有時長項,是以氣門開度“時間值”能夠以積分的形式(mm / s)表現(xiàn)。?飽和因子用于評估氣門機構(gòu)的時間段。?豐度系數(shù)定義為氣門通道的平均截面積與最大橫截面積的比值。?時間值和豐度系數(shù)用于表示氣門的通過。?在相同的氣流速率下,參數(shù)越大,進氣體積越大。
通常有:
進氣閥喉直徑 D = 35-39.37mm,取35 mm
排氣門喉直徑 D = 30.63-35 mm,取32mm
進氣閥頭直徑 D = 36.75-43.75mm,取38mm
排氣門直徑 D = 32.38-36.75mm,取34mm
氣門直徑 D = 28-43.75 mm,取40mm
排氣閥直徑 ,取36mm
圖3-2 進排氣門流量系數(shù)與其升程的關(guān)系
圖3-3 馬赫與流量效率
進氣流量與氣氣門之間的相對升力如圖3-2所示。也就是,平時的進氣門升程,采取;排氣門升程,,取。
增大氣門的打開速率,加大氣門正時可以加強氣體通過它的能力。然而,在這其中的氣體,運動期間確定氣體穿過氣的阻力存在一系列成分。進氣門頭與桿的過渡部分的形狀,氣門座中的孔的形狀等,都會影響氣門的實際通過能力。
實驗表明,當(dāng)時,充氣效率大大降低,設(shè)計檢查發(fā)動機的最大轉(zhuǎn)速時的馬赫指數(shù),確保。
(3-5)
(3-6)
氣缸直徑,;
- 進氣門口處的聲音的速度;
- 重力加速度,;
- 活塞平均速度,;
- 攝入量的平均流量系數(shù);
絕熱絕熱溫度,;
- 絕熱指數(shù),;
- 氣體常數(shù),;
所以 (3-7)
(3-8)
滿足所需要求。
氣門的主要尺寸是氣門頭部的直徑和氣門的總長度,其中氣門頭直徑應(yīng)盡可能大,因為氣缸的良好的通風(fēng)要求,以及進氣口的頭部直徑排氣門已根據(jù)相關(guān)信息確定。而且氣門的總長度完全決定于氣缸蓋和氣門彈簧的高度。通常期望使氣門的總長度最小化以減小發(fā)動機的整體高度。
氣門桿的直徑應(yīng)足夠大,以便于散熱并承受可能的橫向力[11],[12]。當(dāng)搖臂或擺動驅(qū)動在氣門上時,會有不大的側(cè)向力,一般來說在這里取,。
除了氣體的流動阻力之外,頭部還涉及其結(jié)構(gòu)剛度,重量,溫度和制造過程,這與其使用壽命有關(guān)。
排氣門具有較為成熟的兩條國產(chǎn)材料焊接工藝。頭部原料為奧氏體鋼硅鋼鉻鋼4Cr9Si2,棒材用于馬氏體鋼4Cr10Si4Mo頭桿與摩擦焊接,排氣門桿具有較厚的鉻,可對棒和導(dǎo)管的磨損性進行改良。桿端采取高頻淬火,排氣門封閉錐與表面金剛石合金,用于加強耐磨性。氣門桿端面和咔嗒聲摩擦,應(yīng)具有較高的耐磨性。
1.對氣門進行建模
1) 首先是繪制氣門的二維草圖,如圖3-4所示
圖3-4 (a)氣門底部尺寸圖
圖3-4 (b)氣門的二維草圖
2) 退出草繪工作臺,使用凸臺命令,繪制模型。如圖3-5所示
圖3-5 氣門模型
3.2.2 氣門座圈
氣門座和氣缸蓋的工作環(huán)境,原料膨脹系數(shù)不同,我們一定要認(rèn)真決定其適合尺寸。經(jīng)驗表明,氣門座外側(cè)的外徑在左右可以。鋁合金缸蓋應(yīng)為上限[13]。另外為了保持這樣的干擾量,氣門座也應(yīng)該有足夠的橫截面尺寸,一般取座環(huán)的壁厚倍,把氣門座的高度排除在倍以外但是要依靠大的干擾來防止氣門座的釋放,可能會導(dǎo)致很大的變形,所以使用鋁合金氣缸蓋或鋼氣門座的局部塑性變形來提高松動的可靠性,允許小干擾。在這種情況下,座圈的徑向直徑為,高度為。
3.2.3 氣門導(dǎo)管
氣門導(dǎo)向器除了引導(dǎo)氣門上下正確的動作外,還將氣門桿的熱量傳導(dǎo)到蓋子或氣缸。為了方便更換或修理,氣門管道制成單件,壓入氣缸蓋或氣缸桿空座。氣門管通常由鑄鐵制成,因為鑄鐵中的石墨具有良好的磨損和滑動效果。為了限制流入氣門導(dǎo)向件的潤滑油的溢出,并且通過管道中的間隙防止?jié)櫥吐淙肫字校瑥椈砂宓南聜?cè)設(shè)置有薄金屬片或橡膠密封件。導(dǎo)管及其座蓋通過氣門桿直徑為,一般進氣門間隙,排氣門桿,為氣門桿直徑。導(dǎo)管壁厚一般為,取。
3.2.4 彈簧建模與計算
1. 彈簧的建模
1)首先依舊是建立彈簧的二維草圖,如圖3-6所示
圖3-6 彈簧二維草圖
2)退出草繪工作臺,使用凸臺命令,建立如圖3-7所示模型
圖3-7 (a)彈簧模型
圖3-7 (b)彈簧主要數(shù)據(jù)
2. 彈簧預(yù)緊
彈簧預(yù)緊力,氣門接近彈簧預(yù)緊,確保氣門和氣門座的封閉較好。一般認(rèn)為,彈簧預(yù)壓應(yīng)在進氣區(qū)產(chǎn)生超過的壓力,根據(jù)引進類型,為入口直徑,按照以前的設(shè)計知道,為。,。
彈簧最大彈性,,在選擇中需要。
3. 氣門彈簧的基本尺寸的確定:
外彈簧,?。?
內(nèi)彈簧,取;
簧絲直徑;
允許的剪切應(yīng)力為,取值為,當(dāng)氣門完全打開時,氣門彈簧的最大彈簧力是理想的,它應(yīng)該克服此時由氣門機構(gòu)的最大負加速度產(chǎn)生的最大慣性力,以便避免組件的相互去除打開,破壞組織的正常工作。雙彈簧的使用一般為外彈簧,內(nèi)彈簧為。這里取外彈簧,內(nèi)彈簧。
彈簧的有效數(shù)量圈數(shù)取,彈簧總數(shù),彈簧外有效循環(huán)次數(shù)為5,內(nèi)彈簧為7.5,則外彈簧,內(nèi)彈簧。
內(nèi)彈簧負荷分布比例為,設(shè)計為。內(nèi)彈簧預(yù)載為166.7N,最大彈性為233.3N,外彈簧預(yù)載為233.3N,最大彈性為466.7N。
彈簧的最大高度,彈簧的安裝高度,外彈簧,內(nèi)彈簧,最大氣門升程,所以為最大彈性高度,外彈簧,彈簧。
4. 彈簧參數(shù)的計算
1) 彈簧剛度是,彈簧材料的剪切彈性模量,其中G是80000;彈簧有效匝數(shù)彈簧直徑和彈簧絲直徑。
外彈簧: (3-9)
內(nèi)彈簧: (3-10)
2) 彈簧和圈的高度和圓的變形量:
(3-11)
(3-12)
外彈簧:
內(nèi)彈簧:,
彈簧自由狀態(tài)的間距,螺旋角和拉伸長度為:
節(jié)距t: (3-13)
螺旋角: (3-14)
展開長度: (3-15)
外彈簧:;
;
;
內(nèi)彈簧:;
5. 檢查氣門彈簧的強度
靜強度計算
安裝彈簧是會承受最大靜載荷,要將最危險的情形考慮進去,它的狀態(tài)為并圈狀態(tài)。截面應(yīng)力為,為最大靜載荷,,曲率系數(shù)是鋼絲截面中剪切應(yīng)力不均勻分布的影響系數(shù),可由下式計算:
。在這個式子里,旋繞比率為,
外彈簧:
內(nèi)彈簧:
彈簧和環(huán)的剪切應(yīng)力應(yīng)小于材料允許的剪切應(yīng)力,即,取為抗拉強度的,,與相比,外彈簧滿足要求。
6. 疲勞強度檢查
在工作時的氣門彈簧會受到交變載荷,應(yīng)計算疲勞強度,彈簧載荷和彈簧截面間剪切應(yīng)力在到變化與到循環(huán)變化之間的周期,即:
(3-17)
(3-18)
疲勞強度的安全系數(shù)
(3-19)
在經(jīng)常使用的氣門材料中:
外彈簧:
內(nèi)彈簧:
安全系數(shù)應(yīng)不低于之間。因此,上式中的內(nèi)外彈簧達到要求。
氣門彈簧由碳鉻氧化鋁絲或硅鉻絲螺旋圓柱形彈簧制成,在此選擇50CrVA。氣門彈簧的功能是確保氣門和氣門座靠近在一起,以防止氣門在打開和關(guān)閉過程中由于氣門,搖臂和其他運動部件的慣性力和脫離現(xiàn)象而發(fā)生,要做到盡可能縮減氣門座的打擊力,還要考慮降低機器的高度。三缸柴油發(fā)動機氣門彈簧采用內(nèi)外同心二等圓柱彈簧,彈簧的氣門尺寸左右均勻,防止兩彈簧相互卡住。彈簧在噴丸的工藝下使疲勞強度得到提高,同時進行回火處理表面。
氣門彈簧座用鋼板沖壓。座的上方為彈簧,座的下方的鎖塊是固定的,用于彈簧襯里。
總結(jié)彈簧參數(shù)如下:
表3-1 彈簧的參數(shù)
參數(shù)
外彈簧
內(nèi)彈簧
彈簧中徑
24
18
簧絲直徑
3.5
2.5
總?cè)?shù)
7.5
9.5
有效圈數(shù)
5
7
彈簧剛度G
10.34
4.67
自由長度
88.7
71.8
安裝高度
56.9
53.9
最大彈力高度
44.9
41.9
并圈高度
21.875
23.1255
預(yù)緊力
233.3
116.7
最大彈力
466.7
233.3
節(jié)距t
14.65
10.18
螺旋角
9.46
10.21
展開長度
1091.4
885.4
安全系數(shù)
1.3749
1.3751
3.3 氣門組的裝配
氣門組由上述氣門,彈簧,氣門座等組成。我們已完成上述的建模,此時可以對氣門組完成裝配。裝配圖如圖3-8所示
圖3-8 氣門裝配圖
3.4 凸輪軸
1. 介紹
它是一個直軸,帶有偏心凸輪。其作用是控制氣瓶門的開閉。
凸輪軸由鍛鋼或特種鑄鐵制成。凸輪和油頸要進行熱處理,以加強其硬度和耐磨性。凸輪軸由曲軸通過齒輪傳動,凸輪軸軸承支撐凸輪軸,以減少磨損,常用于鋼板鑄造的鋼板底部。
凸輪軸推力板的間隙一般在之間[14]。
2. 凸輪軸的建模
1) 繪制凸輪軸的二維草圖
通過CATIA軟件的草圖模塊,建立凸輪軸的二維模型,凸輪軸二維模型中需要建立多個模塊的草圖,最終繪制出如圖3-9所示
圖3-9 凸輪軸二維草圖
2) 生成模型
退出草繪工作臺,使用凸臺命令,繪制出整體模型,如圖3-10
圖3-10 凸輪軸模型圖
3.4.1 凸輪型線設(shè)計
凸輪輪廓設(shè)計,其輪廓的主要設(shè)計。該方法的一般表示方式是:給出凸輪基座的半徑和相應(yīng)的轉(zhuǎn)塔提升曲線。若是給出功能而且同時給出凸輪基座半徑,則當(dāng)凸輪轉(zhuǎn)過角度a時,挺柱從靜止的地方上升的距離A是獨一確定凸輪輪廓的。與供氣凸輪對應(yīng)的夯實功能通常由兩方面構(gòu)成,一方面是緩沖的,另一方面是基本的。若是設(shè)計合意,氣門應(yīng)在上升緩沖液的末了打開,并在基本方面的末了封閉。其實因為有變形等因素,普遍來說不可能一定正確,氣門打開和封閉的時候和理想的狀況老是會有一些錯誤,要是錯誤就不行了。
凸輪的要求:使配氣機構(gòu)能夠順利進行內(nèi)外氣體交換。這樣做的能力通常通過反映氣門通過容量的尺寸的“氣門瞬時路徑區(qū)域”或“時間段”的大小來衡量。假設(shè)當(dāng)P氣門提升為Y時凸輪軸角度為0度,則,則氣門通道面積為:
(3-20)
氣門的開啟時間為:
(3-21)
為了便于比較各個凸輪對工作截面角度和相對于充氣性能的最大升力的影響,通常使用豐度系數(shù)。通常認(rèn)為豐滿度系數(shù)有利于充氣性能,但并不是絕對的。
1. 使氣門機構(gòu)工作平穩(wěn),振動和噪音更小可以做以下事情;
1) 應(yīng)該有一個很好的平滑度;
2) 最大正向加速率與最大負加速率之間不要存在特別大的值,同時也不要有太大的最大值的脈沖;
3) 正加速段的寬度應(yīng)與氣門機構(gòu)的振動周期更好地匹配。一般來說,正加速度寬度不應(yīng)該太?。?
4) 緩沖高度應(yīng)得當(dāng)選擇,普遍不宜太小。
2. 凸輪和搖桿之間的接觸應(yīng)力不應(yīng)該太大,將凸輪和搖臂設(shè)置為兩個金屬圓筒的不同材料,兩線接觸,接觸應(yīng)力為
(3-22)
一般看來,P1的最小值應(yīng)>2mm,可以更大最優(yōu)[15]。凸輪的曲率半徑的大小受到其基圓的半徑的很大的影響,是以應(yīng)該在意的是,設(shè)計的整個位置應(yīng)該被賦予足夠的位置,以使凸輪軸使凸輪基座半徑絕對大。
3. 凸輪應(yīng)有優(yōu)良潤滑的性能
在設(shè)計凸輪時,凸輪和挺柱中的潤滑油膜的形狀和形狀對付工件的可靠性和持久性也是有要求的。凸輪軸和扁平挺柱中的最小潤滑膜厚度計算為:。如引入不可估量的參數(shù)(稱為流體動力潤滑來確定功能的數(shù)量),是凸輪角的一個功能。
4. 氣門不能接觸活塞。
3.4.2 緩沖段設(shè)計
對應(yīng)于供氣凸輪的搖桿升降曲線在上升和下降段中具有緩沖部分。上升和下降緩沖器的設(shè)計可能相同或不同。
1. 選擇基本參數(shù)
進氣凸輪緩沖器的高度為,凸輪墊為。進氣凸輪輪廓使用對稱的凸輪輪廓。進氣工作曲線上升,進氣凸輪輪廓采用復(fù)合擺線擺放平面。型線方程為:
上升緩沖區(qū)段: (3-23)
(3-24)
上工作部分:
(3-25)
下工作部分;對稱
下降緩沖區(qū)段:對稱
3.4.3 凸輪軸進排氣凸輪角度設(shè)計
氣缸(或排)之間的角度為,在1-3-2之間的點火順序。排氣延時角,排氣提前角。吸氣延遲角為,吸氣提前角為。
相同的氣缸進入排氣凸輪角為;
進口和排氣凸輪工作方面為半包角為;
出口凸輪與挺柱軸之間的角度為:。
3.4.4 基本段設(shè)計
在這種設(shè)計中,凸輪上升和下降的緩沖高度相等[16]。進氣門間隙為,排氣門間隙,氣門搖臂,對緩沖區(qū)高度分析:進氣凸輪,排氣凸輪。若是增加量靠前,那么凸輪,排氣凸輪。
通過對每個參數(shù)的調(diào)整和計算,氣門的動態(tài)性能基本滿足。進氣和排氣凸輪的基本參數(shù)表3-2和升程曲線圖3-11如下:
表3-2 凸輪參數(shù)
參數(shù)
進氣凸輪
排氣凸輪
凸輪軸頸(mm)
52.485
52.485
基圓半徑(mm)
15
15
上升(降落)過度包角(度)
27.5
27.5
上升(降落)緩沖段終點速度(mm/deg)
0.0118
0.0137
上升(降落)緩沖段半包角(度)
60
60
上升緩沖段起點升程(mm)
0.21
0.25
緩沖段型線類型
復(fù)合擺線帶平段
基本工作段型線類型
高次多項次型線
圖3-11 進、排氣門氣門升程圖
3.4.5 挺柱
挺柱的功能是將凸輪的推動力傳達到推桿,并承載凸輪軸轉(zhuǎn)動時所加的橫向力。挺柱在其頂部安了一個調(diào)節(jié)螺絲,以調(diào)節(jié)氣門間隙。電車通常由Ni-Cr合金鑄鐵或冷沖合金鑄鐵制成,摩擦面應(yīng)在熱處理后進行拋光。
3.5 本章小結(jié)
通過對配氣機構(gòu)的整體分析,得到大量數(shù)據(jù),同時運用CATIA構(gòu)造了大量零件圖以及裝配圖,在此方面取得了大量成果。
4 總結(jié)與展望
這個學(xué)期是進行畢業(yè)生設(shè)計,是大我在大學(xué)中最認(rèn)真,最辛苦也是學(xué)到最多的終極設(shè)計。在這之中,我感覺到自己還有許多的知識需要去學(xué)習(xí),需要去掌握,并要加強對自己的要求去更多的了解,去學(xué)習(xí),去解決遇到的各種問題。同時這個過程中,我也看到了自己的強項,自己優(yōu)于別人的方面,增加了我的自信心。這是大學(xué)中的最后一仗,也是要步入社會的我們的第一個測試,讓我對一些不好解決的問題又增添了許多新的想法。相信對我之后會有很大的幫助。
剛拿到這個題目的時候,我在網(wǎng)上,圖書館里收集了許多關(guān)于配氣機構(gòu)的文獻等,并對它們進行了初步的閱讀了解。同時這些文獻也給我了很大的幫助,讓我從中了解到了更多的知識。同時也看了幾章外文文獻,雖然不能完全看懂,查閱著網(wǎng)上的翻譯,在這個過程中,學(xué)習(xí)到了新的單詞以及鞏固了那些學(xué)過的單詞,尤其是當(dāng)看到關(guān)于車輛這方面的單詞時便會動手將它們記下來。翻譯時,要按照在汽車行業(yè)中的意思去翻譯,才能體現(xiàn)出話語的意思來。
緊接著就進入到了設(shè)計階段,自己找的資料并沒有為設(shè)計提供很大的幫助,而是像老師請教并要了些資料去查看。翻閱這些資料,并與老師交談,才了解到設(shè)計并不是想象中的那么簡單,繪制圖形并建模方面我使用了AutoCAD2014和CATIA軟件,平時對繪圖沒有什么概念,又通過網(wǎng)絡(luò)學(xué)習(xí)了相關(guān)的繪圖建模知識。當(dāng)完成時,有了深深地自豪感,同時也可以去熟練的使用AutoCAD和CATIA了。
這次學(xué)習(xí)讓我知道了在遇到問題時要多思考,多動手,去翻書,去利用網(wǎng)絡(luò)查閱相關(guān)資料。同時,也要像老師,學(xué)長以及同學(xué)請教,或許就能解開你的疑惑。查閱相關(guān)的論文資料也可以得到想要的一些信息。
參 考 文 獻
[1] 王望予.汽車設(shè)計[M].北京:機械工業(yè)出版社.2004.
[2] 劉惟信.汽車設(shè)計[M].北京:清華大學(xué)出版社.2001.
[3] 余志生.汽車?yán)碚揫M].北京:機械工業(yè)出版社.2000.
[4] 陳家瑞.汽車構(gòu)造[M].北京:人民交通出版社.1999.
[5] 譚榮望.內(nèi)燃機結(jié)構(gòu)設(shè)計[M].北京:中國鐵道出版社.1990.
[6] 陸際清,沈祖京,孔憲清,孟嗣宗,程蔭芊.汽車發(fā)動機設(shè)計[M].北京:清華大學(xué)出版社.1993.
[7] 仇滌凡,李 帆.柴油機配氣機構(gòu)動力學(xué)特性的數(shù)值研究[J]. 遼寧石油化工大學(xué)學(xué)報.2008(5).
[8] 呂 林, 王勇波.車用發(fā)動機配氣機構(gòu)運動學(xué)和動力學(xué)分析[J].武漢理工大學(xué)學(xué)報.2006(7).
[9] 郭常立,張保成,馬艷艷.發(fā)動機頂置凸輪軸配氣機構(gòu)動力學(xué)分析[J].現(xiàn)代車用動力.2007(11).
[10] 宋濟平,王全娟.汽車發(fā)動機氣門機構(gòu)的動態(tài)特性分析[J].噪聲與振動控制.2008(12).
[11] 劉忠民,俞小莉,沈瑜銘.配氣機構(gòu)動力學(xué)模型的比較研究[J].浙江大學(xué)學(xué)報(工學(xué)版).2005.
[12] 董錫明,李圣華,羅杰敏,王閣順.內(nèi)燃機配氣機構(gòu)動力學(xué)的研究[J].中國鐵道科學(xué).1979.
[13] 劉曉勇,董小瑞.發(fā)動機配氣機構(gòu)動力學(xué)分析[J]. 機械工程與自動化.2007.
[14] 浦耿強,蔣國英,白 羽. 頂置凸輪配氣機構(gòu)動力學(xué)分析[J]. 汽車科技.2000 .
[15] 吉國光,發(fā)動機的氣門材料及加工工藝[J].內(nèi)燃機.1995.(6).
[16] 劉錚,王建昕. 汽車發(fā)動機原理教程[M].北京:清華大學(xué)出版社.2001.
致 謝
時間過得很快,不知不覺已從大一走向大四,美好的大學(xué)生活也要結(jié)束了,四年的學(xué)習(xí)和實踐,都付諸于本次的設(shè)計當(dāng)中,檢驗著自己。
這次設(shè)計是在韓文艷老師的指導(dǎo)和嚴(yán)格要求下進行的,從給我們下發(fā)題目到給予我們資料和意見,再到論幫我們修改初稿去定稿,這其中是韓老師辛勤的汗水,在做畢設(shè)的這段時間里,韓老師幫我們找資料,給我們提意見,給予了我們很大的幫助,沒有韓老師的關(guān)懷和幫助,也不會讓我寫出如此的論文來。在此刻向韓老師表示深深的感謝。
很感激四年來幫助過我的老師。感謝您們在這四年里幫我成長,幫我學(xué)到了更多。因為您們教給我的,才讓我有了這方面的知識,才讓我有了面對困難時的勇氣,讓我更好的能夠完成我的論文。
與此同時,我也要感謝那些寶貴的材料,感謝他們的作者,讓我了解并學(xué)習(xí)到了很多知識。
也要感謝我四年來朝夕相處的同學(xué)們,在這期間我們互相討論,出謀劃策,互相學(xué)習(xí),給我了很多的幫助,在這里謝謝大家。
34
外文文獻及譯文
文獻題目:THE IMPACT OF VALVE EVENTS UPON ENGINE
PERFORMANCE AND EMISSIONS
文獻來源: Taylor&Francis
文獻發(fā)表日期: 2006年12月14日
學(xué)生姓名: 學(xué)號:
系 別:
專 業(yè):
指導(dǎo)教師: 職稱:
年5月19日
THE IMPACT OF VALVE EVENTS UPON ENGINE PERFORMANCE AND EMISSIONS
Summary This paper seeks to provide an overview of the basic parameters used in the specification of valve timing in spark ignition engines. The effect of these parameters on engine performance and emissions will be discussed in general terms rather than with reference to any particular engine or type of engine. Some of the current industry trends will be discussed in terms of their impact on the engine valve timing parameters.
General
The diagrams above illustrate the conventional 4-stroke cycle of an internal combustion engine. It can be seen that both the intake and exhaust valves remain closed during the compression and ignition phases of the cycle. It is therefore usual for any discussion of valve timing to focus on parts 1&4 of the cycle, that is the valve motion in the periods either side of piston Top Dead Centre (TDC) on the non-firing stroke.
The valve motion is controlled by a camshaft(s) that rotates at half the speed of the crankshaft. During the four stroke cycle the crankshaft rotates twice, causing two piston cycles, whilst the camshaft rotates once, causing one cycle of each valve. The different speeds of the crankshaft and camshaft can be the cause of some confusion when describing the timing of valve opening and closing with angles, as 360° of crankshaft rotation is equivalent to 180° of camshaft rotation.
It is normal to discuss the parameters of valve timing with reference position of the piston using crankshaft angle measured from piston TDC or BDC (Bottom Dead Centre). This paper will hold to this convention but it should be noted that the duration of valve lift in crankshaft degrees is twice the duration of the profile actually ground onto the camshaft. Duration is defined as the angle of crankshaft rotation between the opening and the closing of the intake or the exhaust valve.
The term “valve event” refers to the opening or closing of either the intake or the exhaust valve(s) with reference to piston TDC or BDC. The graph below shows the intake and exhaust valve events as they would typically appear around the end of the exhaust stroke (TDC).
The main parameters to be discussed are: - 1. Exhaust Valve Opening Timing – EVO 2. Exhaust Valve Closing Timing – EVC 3. Intake Valve Opening Timing – IVO 4. Intake Valve Closing Timing – IVC 5. Peak Valve Lift The overlap region (if present) is the difference between IVO and EVC (if positive) and is thus affected by changes in either IVO or EVC. It can be seen from the above graph that the valve events do not coincide with TDC and BDC as depicted in the “theoretical” four-stroke cycle. The reasons for this and the compromises inherent in the selection of valve event timings will form the basis for discussion in this paper.
Effects of Changes to Exhaust Valve Opening Timing - EVO As the exhaust valve opens the pressure inside the cylinder resulting from combustion is allowed to escape into the exhaust system. In order to extract the maximum amount of work (hence efficiency) from the expansion of the gas in the cylinder, it would be desirable not to open the exhaust valve before the piston reaches Bottom Dead Centre (BDC). Unfortunately, it is also desirable for the pressure in the cylinder to drop to the lowest possible value, i.e. exhaust back pressure, before the piston starts to rise. This minimises the work done by the piston in expelling the products of combustion (often referred to as blow down pumping work) prior to the intake of a fresh charge. These are two conflicting requirements, the first requiring EVO to be after BDC, the second requiring EVO to be before BDC. The choice of EVO timing is therefore a trade-off between the work lost by allowing the combusted gas to escape before it is fully expanded, and the work required to raise the piston whilst the cylinder pressure is still above the exhaust back-pressure. With a conventional valve train, the valve lifts from its seat relatively slowly and provides a significant flow restriction for some time after it begins to lift and so valve lift tends to start some time before BDC. A typical EVO timing is in the region of 50-60° before BDC for a production engine.
The ideal timing of EVO to optimise these effects changes with engine speed and load as does the pressure of the gasses inside the cylinder. At part load conditions, it is generally beneficial if EVO moves closer to BDC as the cylinder pressure is much closer to the exhaust back pressure and takes less time to escape through the valve. Conversely, full load operation tends to result in an earlier EVO requirement because of the time taken for the cylinder pressure to drop to the exhaust back-pressure. Summary:
Effects of Changes to Exhaust Valve Closing Timing - EVC
The timing of EVC has a very significant affect on how much of the Exhaust gas is left in the cylinder at the start of the engine’s intake stroke. EVC is also one of the parameters defining the valve overlap, which can also have a considerable affect on the contents of the cylinder at the start of the intake stroke.
For full load operation, it is desirable for the minimum possible quantity of exhaust gas to be retained in the cylinder as this allows the maximum volume of fresh air & fuel to enter during the Intake stroke. This requires EVC to be at, or shortly after TDC. In engines where the exhaust system is fairly active (i.e. Pressure waves are generated by exhaust gas flow from the different cylinders), the timing of EVC influences whether pressure waves in the exhaust are acting to draw gas out of the cylinder or push gas back into the cylinder. The timing of any pressure waves changes with engine speed and so a fixed EVC timing tends to be optimised for one speed and can be a liability at others.
For part load operation, it may be beneficial to retain some of the exhaust gasses, as this will tend to reduce the ability for the cylinder to intake fresh air & fuel. Retained exhaust gas thus reduces the need for the throttle plate to restrict the intake and results in lower pumping losses (see Appendix A) in the intake stroke. Moving EVC Timing further after TDC increases the level of internal EGR (Exhaust Gas Recirculation) with a corresponding reduction in exhaust emissions.
There is a limit to how much EGR the cylinder can tolerate before combustion becomes unstable and this limit tends to become lower as engine load and hence charge density reduces. The rate of combustion becomes increasingly slow as the EGR level increases, up to the point where the process is no longer stable. Whilst the ratio of fuel to oxygen may remain constant, EGR reduces the proportion of the cylinder contents as a whole that is made up of these two constituents. It is this reduction in the ratio of combustible to inert cylinder contents which causes combustion instability.
Typical EVC timings are in the range of 5-15° after TDC. This timing largely eliminates internal EGR so as not to detrimentally affect full load performance. Summary:
Effect of changes to Intake Valve Opening Timing – IVO
The opening of the intake valve allows air/fuel mixture to enter the cylinder from the intake manifold. (In the case of direct injection engines, only air enters the cylinder through the intake valve). The timing of IVO is the second parameter that defines the valve overlap and this is normally the dominant factor when considering which timing is appropriate for a given engine. Overlap will be discussed in more detail later in this paper.
Opening the intake valve before TDC can result in exhaust gasses flowing into the intake manifold instead of leaving the cylinder through the exhaust valve. The resulting EGR will be detrimental to full load performance as it takes up space that could otherwise be taken by fresh charge. EGR may be beneficial at part load conditions in terms of efficiency and emissions as discussed above.
Later intake valve opening can restrict the entry of air/fuel from the manifold and cause in-cylinder pressure to drop as the piston starts to descend after TDC. This can result in EGR if the exhaust valve is still open as gasses may be drawn back into the cylinder with the same implications discussed above. If the exhaust valve is closed, the delay of IVO tends not to be particularly significant, as it does not directly influence the amount of fresh charge trapped in the cylinder.
Typical IVO timing is around 0-10° before TDC which results in the valve overlap being fairly symmetrical around TDC. This timing is generally set by full load optimisation and, as such, is intended to avoid internal EGR.
Summary:
Effect of changes to Intake Valve Closing Timing – IVC
The volumetric efficiency of any engine is heavily dependent on the timing of IVC at any given speed. The amount of fresh charge trapped in the cylinder is largely dictated by IVC and this will significantly affect engine performance and economy.
For maximum torque, the intake valve should close at the point where the greatest mass of fresh air/fuel mixture can be trapped in the cylinder. Pressure waves in the intake system normally result in airflow into the cylinder after BDC and consequently, the optimum IVC timing changes considerably with engine speed. As engine speed increases, the optimum IVC timing moves further after BDC to gain maximum benefit from the intake pressure waves.
Closing the intake valve either before or after the optimum timing for maximum torque results in a lower mass of air being trapped in the cylinder. Early intake closing reduces the mass of air able to flow into the cylinder whereas late intake closing allows air inside the cylinder to flow back into the intake manifold. In both cases, the part load efficiency can be improved due to a reduction in intake pumping losses (see Appendix A).
A typical timing for IVC is in the range of 50-60° after BDC and results from a compromise between high and low speed requirements. At low engine speeds, there will tend to be some flow back into the intake manifold just prior to IVC whereas at higher speeds, there may still be a positive airflow into the cylinder as the intake valve closes
Summary:
Effects of Valve Overlap
As discussed previously, valve overlap is the time when both intake and exhaust valves are open. In simple terms, this provides an opportunity for the exhaust gas flow and intake flow to influence each other. Overlap can only be meaningfully assessed in conjunction with the pressure waves present in the intake and exhaust systems at any particular engine speed and load. In an ideal situation, the valve overlap should allow the departing exhaust gas to draw the fresh intake charge into the cylinder without any of the intake gas passing straight into the exhaust system. This allows the exhaust gas in the combustion chamber at TDC to be replaced and therefore the amount of intake charge to exceed that which could be drawn into the cylinder by the swept volume of the piston alone.
A given amount of overlap unfortunately tends to be ideal for only a portion of engine speed and load conditions. Generally, the torque at higher engine speeds and loads can benefit from increased overlap due to pressure waves in the exhaust manifold aiding the intake of fresh charge. Large amounts of overlap tend to result in poor emissions at lower speeds as fuel from the intake charge can flow directly into the exhaust. High overlap can also result in EGR which, although beneficial to part load economy, reduces full load torque and can cause poor combustion stability especially under low load conditions such as idle. Poor idle quality can therefore result from too much overlap.
The valve overlap tends to be fairly symmetrical about TDC on most engines. The further away from TDC that valve overlap is present, the more effect the piston motion will have on the airflow. Early overlap may result in exhaust gasses being expelled into the intake manifold and late overlap may result in exhaust gasses being drawn back into the cylinder. Both of these situations result in internal EGR that can be beneficial to part load emissions and efficiency. As discussed earlier, internal EGR tends to be avoided due to the detrimental effect it has on full load torque.
Valve Peak Lift
Valve peak lift directly affects the ability for air to flow into the cylinder and exhaust to leave the cylinder and as a result it significantly influences engine performance. There are some practical limitations of peak lift in most engines that are dependent on the design of the particular engine:
1. Normally the piston crown is profiled to maximise the clearance adjacent to the valves but there are limitations as to how much valve lift can be accommodated without unduly compromising the piston design.
2. The duration of the valve lift imposes a restriction on valve lift due to the acceleration required to achieve a high lift with a short duration. The higher the running speed of the engine, the more the peak lift is restricted for a given valve lift duration.
Low values of valve peak lift will clearly restrict the ability of gas to flow into and out of the cylinder, effectively throttling the engine. Maximum engine power output will generally benefit from as much valve lift as possible up to the point where air flow becomes restricted by other features such as the manifold system or cylinder head porting.
It does not follow that engines should have the maximum possible valve lift as this can adversely affect low speed performance. Lower intake valve lifts result in higher gas velocity past the valve and this improves fuel mixing and combustion. For maximum torque at a given speed, lift should be kept as low as possible up to the point where the intake of fresh charge becomes restricted.
Part load economy will benefit from the intake being restricted by valve lift, as it reduces the need for throttling by the engine throttle and this will reduce intake pumping losses. Lift is not normally dictated by part load considerations, as this would severely limit the potential output of the engine.
The chosen value of peak valve lift is therefore a compromise between low speed and high speed full load requirements. A typical value for a production engine is in the range of 8-10mm.
Industry Trends
There is a constant need for internal combustion engines to become more powerful and efficient with reduced levels of emissions driven both by legislation and increasing customer expectations. For an engine with fixed valve timing, there are inherently compromises made between emissions, high/low speed torque and full/part load efficiency. Ways of avoiding compromise between different engine requirements are constantly being incorporated into new engines and investigated for application to future engines.
The following technologies are becoming increasingly common and are discussed in the context of the engine valve timing strategies outlined in this paper:
Exhaust Gas Recirculation (EGR) Systems
The presence of exhaust gas in the combustion chamber can be beneficial for emissions, yielding reductions in NOx, HC and CO. The timing of EVC and IVO can cause exhaust gas to be retained in or re-introduced into the cylinder as discussed earlier in this paper. This is known as “internal” EGR and is generally avoided due to its impact upon full load torque.
“External” EGR systems are now becoming more common where gas from the exhaust system is pumped back into the intake manifold at part load conditions. This provides benefits in part load emissions and improved efficiency due to a reduction in intake pumping losses (see Appendix A). As the quantity of EGR can be changed to suit engine speed and load conditions, there need not be any detriment to full load torque.
Internal EGR however, does have two significant benefits over external EGR:
1. External systems are expensive and are prone to durability problems due to their continual exposure to hot, dirty gasses. The intricate components within EGR control systems are susceptible to the build up of deposits causing leakage or blockage.
2. The recirculated gas in the case of internal EGR is the last portion to have left the cylinder. This portion generally contains the gasses from any crevice volumes in the cylinder and therefore contains a significant portion of the unburned hydrocarbons from the combustion process. External EGR takes a portion of all the exhaust gasses once they are mixed and so has much less ability to reduce hydrocarbon emissions.
Variable Valve Timing
An increasing number of engines are using variable valve timing systems to avoid some of the compromises of fixed valve timing. A fully flexible system, which could vary valve lift and intake and exhaust valve event timings independently for different engine speed and load conditions, could in principal overcome all of the compromises inherent in a conventional valve train system. In practice however, the more flexible a variable valve timing system becomes, the more complex and hence expensive it tends to become.
There are a number of different variable valve timing systems, currently available and under development, to control different valve timing parameters. Although there are many different designs for achieving such variations, these systems can be grouped in terms of their operation.
1. Phase Changing Systems
These systems change the timing of the camshaft in relation to the crankshaft in order to advance or retard the timing of the engine valve events. If applied to an engine with a single camshaft, all of the valve events are shifted by the same amount i.e. if IVC is to be retarded by 10° IVO, EVO and EVC will also be retarded by 10°. On engines with separate Intake and Exhaust camshafts, a phase change system can be used to change the timing of the intake valve events or the exhaust valve events. The use of two phasing devices can permit independent control over Intake and Exhaust timing changes. Phase change systems have no effect on peak valve lift and cannot change the duration of the valve events i.e. IVO and IVC cannot be moved independently.
Phase changing systems have been available on production engines for a number of years but have tended to be applied only to the highest specification engine in a particular range. Phasing of the intake camshaft to gain increased performance with a mechanism that can be moved between two fixed camshaft timings is the most common application with the change in timing normally occurring at a particular engine speed.
More recently, there has been a move towards more flexible control systems that allow the camshaft phasing to be maintained at any point between two fixed limits. This has facilitated camshaft phase optimisation for different engine speed and load conditions and has allowed exhaust camshaft phasing to be used for internal EGR control. Engines with both intake and exhaust camshaft phase control are now being introduced.
2. Profile Switching Systems
This type of Variable Valve Timing system is capable of independently changing valve event timing and valve peak lift. The system switches between two different camshaft profiles on either or both of the camshafts and is normally designed to change at a particular engine speed.
Due to these systems having an inherently two position operation, t
收藏