以上為資料預(yù)覽概圖,下載文件后為壓縮包資料文件?!厩逦?,無(wú)水印,可編輯】dwg后綴為cad圖,doc后綴為word格式,需要請(qǐng)自助下載即可,有疑問(wèn)可以咨詢(xún)QQ 197216396 或 11970985
注塑模具的設(shè)計(jì)和熱分析
S.H. Tang ?, Y.M. Kong, S.M. Sapuan, R. Samin, S. Sulaiman
Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
摘 要
本文介紹塑料注塑模具在生產(chǎn)翹曲測(cè)試樣品和進(jìn)行模具內(nèi)模具熱殘余應(yīng)力的影響的熱分析方面的設(shè)計(jì)。對(duì)在注塑模具設(shè)計(jì)中所需的技術(shù),理論,方法以及應(yīng)該考慮的因素進(jìn)行描述。使用商業(yè)計(jì)算機(jī)輔助版本為13.0 Unigraphics設(shè)計(jì)軟件進(jìn)行模具設(shè)計(jì)。由于試樣的不均勻冷卻,用于進(jìn)行殘余熱應(yīng)力分析模型使用被稱(chēng)為L(zhǎng)USAS分析師,版本為13.5的商用有限元分析軟件進(jìn)行建立和解決。該軟件通過(guò)塑料注塑成型周期為模型提供溫度分布的曲線(xiàn)圖和溫度變化程度,這個(gè)注塑成型周期通過(guò)繪制時(shí)間響應(yīng)曲線(xiàn)得到。結(jié)果表明,相比其他區(qū)域來(lái)說(shuō),收縮可能發(fā)生在冷卻通道的附近。這種模具在不同區(qū)域的不平衡冷卻效果歸咎于翹曲.?2005愛(ài)思唯爾B.V.版權(quán)所有。
關(guān)鍵詞:塑料注塑模具設(shè)計(jì);熱分析
1 前言
塑料工業(yè)是世界上增長(zhǎng)速度最快的行業(yè)之一,位居少量的十億美元的產(chǎn)業(yè)之中。在日常生活中幾乎每一個(gè)產(chǎn)品都涉及到塑料的使用,并且大多數(shù)這些產(chǎn)品可以通過(guò)塑料注塑成型方法[1]進(jìn)行生產(chǎn)。注塑
成型工藝以利用較低的成本[2]創(chuàng)造具有各種外觀(guān)和復(fù)雜的幾何形狀的產(chǎn)品而著稱(chēng)。注塑成型過(guò)程是一個(gè)循環(huán)的過(guò)程。在這個(gè)過(guò)程中有四個(gè)重要的階段。這些階段是:加料,注射成型,冷卻和推出。塑料注塑成型過(guò)程開(kāi)始于將樹(shù)脂和合適的添加劑從注射機(jī)的料斗送到注塑機(jī)的注射系統(tǒng)[3]中。這是加料階段,在這個(gè)階段熱聚合物熔體在注射溫度下充滿(mǎn)型腔。在聚合物充滿(mǎn)型腔之后,在注射成型階段,額外的聚合物熔體在較高壓力作用下注入型腔,以補(bǔ)償由于熔體凝固而可能引起的收縮。緊接著的是冷卻階段”在這階段,模具被冷卻直到塑件有足夠的剛性被推出。最后一步是“推出階段”在此階段模具被打開(kāi),塑料制件被推出,之后模具關(guān)閉重新開(kāi)始下一個(gè)周期[4]。設(shè)計(jì)和制造具有理想特性的注塑成型塑料制件一個(gè)昂貴的過(guò)程,這主要靠經(jīng)驗(yàn)包括反復(fù)修改實(shí)際的工具。在模具設(shè)計(jì)任務(wù)中,設(shè)計(jì)通常在核心部位加一個(gè)特定幾何形狀想凸起和凹坑的模具是非常復(fù)雜,為了設(shè)計(jì)一套模具,許多重要的設(shè)計(jì)因素必須考慮。這些因素是模具大小,模腔的數(shù)量,腔的布局,熱流道系統(tǒng),澆注系統(tǒng),補(bǔ)縮和推出系統(tǒng)[6]。在模具的熱分析中,其主要目的是分析熱殘余應(yīng)力或模壓對(duì)產(chǎn)品尺寸的影響。熱誘導(dǎo)應(yīng)力主要發(fā)生在注射的冷卻階段,主要是低的熱導(dǎo)率和熔融聚合物與模具之間的溫度差異所導(dǎo)致的。在冷卻過(guò)程中在產(chǎn)品內(nèi)存在不均勻的溫度場(chǎng)。
在冷卻過(guò)程中,靠近冷卻管道的地方比遠(yuǎn)離冷卻冷卻管道的地方的受的冷卻程大
一些。 這種溫度的不同,使得材料存在不同的收縮而引起熱應(yīng)力。顯著的熱應(yīng)力可以導(dǎo)致翹曲問(wèn)題。因此,在冷卻階段對(duì)注塑成型塑件的殘余熱應(yīng)力進(jìn)行模擬是很重要的[8]。通過(guò)了解熱殘余應(yīng)力的分布特點(diǎn),能對(duì)其引起的變形進(jìn)行預(yù)測(cè)。在本文中塑料注塑模具在生產(chǎn)翹曲測(cè)試樣品和進(jìn)行模具內(nèi)部模具的熱殘余應(yīng)力 影響的分析的設(shè)計(jì)得以描述。
2 方法論
2.1 翹曲測(cè)試樣本的設(shè)計(jì)
本節(jié)說(shuō)明翹曲測(cè)試樣的設(shè)計(jì)將用于注塑模具。很明顯翹曲是一些薄的殼形件中存在的主要問(wèn)題。因此,產(chǎn)品發(fā)展的主要目的是設(shè)計(jì)出一種塑料制件以確定出薄的殼形的注塑成型塑件翹曲問(wèn)題的有效因素。翹曲測(cè)試樣品來(lái)源于薄的殼形的塑料制品。樣本的外形尺寸長(zhǎng)120毫米,寬50毫米和厚度為1毫米。
用于生產(chǎn)翹曲測(cè)試試樣材料是丙烯腈—丁二烯—苯乙烯(ABS),注射溫度,時(shí)間和壓力分別為210?C,3秒和60兆帕。圖1顯示了翹曲測(cè)試試樣的生產(chǎn)。
圖1 生產(chǎn)的翹曲測(cè)試樣品
2.2 翹曲測(cè)試樣本塑料注塑模具設(shè)計(jì)
本節(jié)介紹的設(shè)計(jì)方面和其他與設(shè)計(jì)生產(chǎn)翹曲測(cè)試樣品模具相關(guān)的因素。用于生產(chǎn)用于產(chǎn)生翹曲測(cè)試樣品的塑料注塑模具的材料是AISI 1050碳鋼。在設(shè)計(jì)模具 過(guò)程中四中設(shè)計(jì)方案被考慮包括:
一,三板式(方案1)雙分型面一模一腔模具。由于成本高,不適用。
二,雙板式(方案2)單分型面一模一腔無(wú)澆注系統(tǒng)模具,生產(chǎn)效率低,不適用。
三,雙板式(方案3)單分型面一模二腔有澆注系統(tǒng)和推出機(jī)構(gòu),由于塑件過(guò)于薄,推桿可能會(huì)損壞產(chǎn)品。
四,雙板式(方案4)單分型面一模二腔有澆注系統(tǒng),利用澆口拉出器扮演推桿的角色避免在推出過(guò)程中產(chǎn)品受損。
在設(shè)計(jì)得到翹曲測(cè)試樣品的模具中,第四種方案被應(yīng)用,不用的設(shè)計(jì)因素在設(shè)計(jì)中已經(jīng)被采用。首先,模具的設(shè)計(jì)是基于注射機(jī)活動(dòng)模板尺寸,所用的注射機(jī)是桿(BOY22D)。這種注射機(jī)有一個(gè)限制,那就是活動(dòng)模板的最大面積通過(guò)兩根拉桿之間的距離決定,注射機(jī)的拉桿之間的距離是254毫米。因此,模具板最大寬度不能超過(guò)這個(gè)距離。此外,為保證模具的開(kāi)啟和運(yùn)轉(zhuǎn),兩根拉桿與模具之間保留4毫米的距離,這使最終模具的最大寬度為250毫米。模具標(biāo)準(zhǔn)模架采用250毫米×250毫米。模架通過(guò)壓板從模架或模板的右上角和左下角與注射機(jī)進(jìn)行配合,其他與模板相關(guān)的尺寸如表1中所示。模具的設(shè)計(jì)要使得鎖模壓力產(chǎn)生的鎖模力高于內(nèi)部型腔的壓力(反壓力)以避免發(fā)生溢料?;谀>邩?biāo)準(zhǔn)件庫(kù)提供的尺寸,型芯的寬度和高度分別為200和250毫米,這些尺寸使在型芯上設(shè)計(jì)兩腔時(shí)兩腔的位置能夠均衡的放置,這樣在凹模是空的時(shí)候模具有足夠的空間去容納塑料熔體注入腔內(nèi)用到的澆道襯套,因此,唯一的一個(gè)標(biāo)準(zhǔn)分型面設(shè)計(jì)在產(chǎn)品表面。
表1 模具板尺寸(寬度×高×厚)
頂部夾緊板
250×250×25
凹模
200×250×40
型芯
200×250×40
側(cè)板/支撐板
37×250×70
推桿固定板
120×250×15
推板板
120×250×20
底部夾緊板
250×250×25
在模具打開(kāi)時(shí),該產(chǎn)品和凝料在分型面被推出來(lái)。模具設(shè)有主澆口和側(cè)澆口。為了順利澆注,澆口的底部設(shè)計(jì)成傾斜角為20度,厚度為0.5毫米。并且為了塑料熔體能夠進(jìn)入型腔,澆口設(shè)計(jì)成寬4mm,厚0.5mm。在模具設(shè)計(jì)中主流道,選用拋物線(xiàn)截面類(lèi)型,這種截面優(yōu)點(diǎn)是在一套模具中可以使注射機(jī)簡(jiǎn)化一半,在這種情況下,它就是型芯。然而這種類(lèi)型的流道與圓截面的類(lèi)型相比存在有更多的熱量損失和廢料的缺點(diǎn)。這可能會(huì)是塑料熔體凝固的更快。這個(gè)問(wèn)題可以通過(guò)設(shè)計(jì)一個(gè)短和大的直徑的流道來(lái)緩解,流道的直徑是6mm。設(shè)計(jì)的流道要在同一時(shí)間,同一溫度和同等的壓力下將材料或者塑料熔體分流到凹模內(nèi)這一點(diǎn)是很重要的。由于這個(gè)原因,型腔布局設(shè)計(jì)成對(duì)稱(chēng)形式。另一個(gè)應(yīng)該被考慮的設(shè)計(jì)因素就是通風(fēng)孔的設(shè)計(jì),型芯和凹模的配合面是經(jīng)過(guò)非常的精細(xì)的加工以防止溢料的發(fā)生。然而這會(huì)導(dǎo)致當(dāng)模具關(guān)閉時(shí)候空氣的進(jìn)入并導(dǎo)致短射或有缺陷。為保證進(jìn)入的空氣被釋放從而避免成型不完全,需要設(shè)計(jì)足夠的通風(fēng)孔。冷卻系統(tǒng)沿著模腔開(kāi)通,并且均衡的布置在模具中以確保均勻的冷卻。這些冷卻管道在凹模和型芯的兩側(cè)可設(shè)。它在湍流的情況下對(duì)模具進(jìn)行充分的冷卻。圖2所示為通風(fēng)孔
和冷卻管道在型腔上的布局。
圖2 通風(fēng)孔和冷卻通道在型芯上的布局
在模具設(shè)計(jì)中,推出機(jī)構(gòu)僅僅有推桿固定板,推桿和推板組成。推桿位于型芯的中間位置,它不僅僅是作為一根推桿準(zhǔn)確的固定塑料制品。同時(shí)在脫模階段,當(dāng)模具打開(kāi)時(shí)它也充當(dāng)推出器將塑料制品推出模具。在型腔內(nèi)沒(méi)有使用和放置額外的推出裝置因?yàn)樯a(chǎn)的產(chǎn)品非常的薄,即1mm。在型腔中加額外的推出裝置可能會(huì)使產(chǎn)品出現(xiàn)小孔并且在推出過(guò)程中損壞產(chǎn)品。最后,足夠的尺寸公差給予考慮以補(bǔ)償材料的收縮。圖3顯示了應(yīng)用Unigraphics開(kāi)發(fā)的模具的三維實(shí)體造型以及線(xiàn)框造型。
圖3 模具的三維造型和線(xiàn)框模型
3 結(jié)果與討論
3.1 產(chǎn)品的生產(chǎn)和修改結(jié)果
在審核過(guò)程中,設(shè)計(jì)和制造的模具生產(chǎn)出來(lái)的翹曲測(cè)試樣品存在一些缺陷。這些缺陷只要是短射,溢料和翹曲。短射可以通過(guò)隨后在凹模的拐角處加工額外的通風(fēng)孔以讓更多的進(jìn)入里面的空氣溢出而得以消除。同時(shí),溢料可以通過(guò)減小注射機(jī)的成型壓力而減少。翹曲可以通過(guò)控制各種參數(shù)比如注射時(shí)間,注射溫度和熔化溫度來(lái)控制。對(duì)這些進(jìn)行修正之后,模具可以通過(guò)澆口以較低的價(jià)格, 較少的工序生產(chǎn)出高質(zhì)量的翹曲測(cè)試樣本。圖4為經(jīng)修改夠加工了額外的通風(fēng)孔以消除短射的模具。
圖4 額外的通風(fēng)孔消除短射
3.2 模具和產(chǎn)品的詳細(xì)分析
模具和產(chǎn)品開(kāi)發(fā)后,分析模具和產(chǎn)品開(kāi)展了。在塑料注射成型過(guò)程中,熔融的ABS在210?C通過(guò)凹模上澆道襯套被注入,直接進(jìn)入型腔中,冷卻開(kāi)始后,該產(chǎn)品就形成了。一個(gè)產(chǎn)品的周期大約需要35s包括20s的冷卻時(shí)間。用于生產(chǎn)生產(chǎn)翹曲測(cè)試試樣的材料是ABS,注射溫度,時(shí)間和壓力分別為210?C,3秒和60兆帕。模具采用AISI 1050碳鋼作為材料。這些材料的性質(zhì)是非常重要的,它決定了模具中的溫度分布,可以利用溫度分布進(jìn)行有限元分析。表2為ABS和AISI 1050碳鋼材料的性質(zhì)。
表2 模具和產(chǎn)品的材料屬性
屬性
模具(碳鋼AISI 1050)
產(chǎn)品(ABS聚合物)
密度(ρ)
7860 kg/m3
1050 kg/m3
楊氏模量(E)
208 Gpa
2.519 Gpa
泊松比(ν)
0.297
0.4
屈服強(qiáng)度(SY)
365.4Mpa
65 Mpa
拉伸強(qiáng)度(SUTS)
636Mpa
636Mpa
熱膨脹系數(shù)(α)
65×10-6K-1
11.65×10-6K-1
電導(dǎo)率(K)
0.135 W/(m K)
49.4 W/(m K)
比熱(C)
1250 J/(kg K)
477 J/(kg K)
對(duì)模具最關(guān)鍵的分析部分是在凹模和型芯上,因?yàn)樗鼈兪钱a(chǎn)品成型的部位。因此熱分析來(lái)研究溫度的分布和在不同時(shí)間的溫度是使用商業(yè)的有限元分析軟件來(lái)完成,這款軟件叫做LUSAS Analyst版本為13.5.為了研究熱殘余應(yīng)力對(duì)模具不同部位的影響,進(jìn)行一次二維的熱分析。由于對(duì)稱(chēng)性,熱分析通過(guò)凹模和型芯的垂直截面和側(cè)面的上半部分的這個(gè)模型來(lái)實(shí)現(xiàn),凹模和型芯在注射階段就固定在一起了。圖5為無(wú)規(guī)律的配合分析的熱分析模型。
圖5 熱分析模型
該模型的建模還涉及分配屬性 ,工序或模型的周期。這需要有限元分析求解器來(lái)分析模具建模和繪出時(shí)間響應(yīng)圖以便顯示在某一段時(shí)間不同區(qū)域的溫度變化。
針對(duì)產(chǎn)品分析利用版本為13.5LUSAS分析師進(jìn)行一個(gè)二維的拉伸強(qiáng)度的分析?;旧鲜鰳悠诽幱谝欢耸芾硪欢斯潭ǖ臓顟B(tài)。增加載荷使模型達(dá)到塑性變形。圖6為受載荷作用的模型的分析。
圖6 為分析產(chǎn)品所用的受載荷模型
3.3 模具和產(chǎn)品分析的結(jié)果和討論
針對(duì)模具分析,對(duì)在不同時(shí)間間隔內(nèi)的熱分布進(jìn)行了觀(guān)察。圖7為塑料注塑成型在一個(gè)完整的周期不同的時(shí)間間隔內(nèi)熱或熱量分布的等高線(xiàn)圖二維分析。
圖7 不同時(shí)間間隔內(nèi)的熱分布等高曲線(xiàn)
對(duì)模具的二維分析,繪制了時(shí)間響應(yīng)圖表以分析熱殘余應(yīng)力對(duì)產(chǎn)品的影響。圖8為為繪制時(shí)間響應(yīng)圖標(biāo)而選取的點(diǎn)。圖9-17為在圖8中所示不同點(diǎn)溫度分布曲線(xiàn)。從圖9-17中繪制的溫度分布中可以看出,圖中的每一個(gè)點(diǎn)的溫度都在上升,即從環(huán)境溫度到某一高于環(huán)境溫度的溫度然后在某一段時(shí)間內(nèi)保持這個(gè)溫度不變。這種溫度的升高是由于產(chǎn)品熔體塑料進(jìn)入型腔所致。在一段時(shí)間之后溫度繼續(xù)上升至最高溫度并且保持在最高溫度,這個(gè)溫度的升高與成型階段高的壓力有關(guān)。這個(gè)溫度一直持續(xù)到冷卻階段的開(kāi)始,冷卻使得模具的溫度到一個(gè)較低的值且保持在這個(gè)水平。繪制的曲線(xiàn)并不光滑,這是因?yàn)槿鄙佥斎胨芰先垠w填充和冷卻水冷卻速度的功能。圖表只顯示在這個(gè)周期內(nèi)溫度能夠達(dá)到的最大值。在熱殘余應(yīng)力時(shí)至關(guān)重要的階段是冷卻階段。這是因?yàn)槔鋮s階段使材料從高于玻璃化轉(zhuǎn)變溫度到低于這個(gè)溫度。材料應(yīng)成分收縮而產(chǎn)生熱應(yīng)力。熱應(yīng)力有可能造成翹曲。
圖8 在產(chǎn)品內(nèi)部選擇的點(diǎn)作的時(shí)間響應(yīng)圖
圖9 第284點(diǎn)的溫度分布圖
圖10 第213點(diǎn)的溫度分布圖
圖11 第302點(diǎn)的溫度分布圖
圖12 第290個(gè)點(diǎn)的溫度分布圖
圖13 第278點(diǎn)的溫度分布圖
圖14 第1838點(diǎn)的溫度分布圖
圖15 第1904點(diǎn)的溫度分布圖
圖16 第1853點(diǎn)的溫度分布圖
圖17 第1866點(diǎn)的溫度分布圖
從圖9-17所示的冷卻階段之后的溫度可以看出,靠近冷卻管道的區(qū)域由于溫度降低快而冷卻程度大一些,而遠(yuǎn)離冷卻管道的區(qū)域冷卻程度要小一些。冷卻速度快,冷卻程度大意味著在這部分區(qū)域發(fā)生更多的收縮。然而最遠(yuǎn)的點(diǎn),第284點(diǎn)由于熱量散失到環(huán)境中而冷卻程度更大。
結(jié)果,由于冷卻管道位于型腔的中間位置而使中間部分的溫度差異比其余的位置要大。由于收縮量大使得塑件中間部分產(chǎn)生壓應(yīng)力。不均勻收縮導(dǎo)致翹曲。但是,冷卻之后各個(gè)點(diǎn)的溫度差異小了,翹曲變形就不會(huì)那么顯著了。對(duì)于一個(gè)設(shè)計(jì)師,設(shè)計(jì)一套具有高效冷卻系統(tǒng)和較小熱殘余應(yīng)力的模具是很重要的。
對(duì)于產(chǎn)品分析,從開(kāi)展研究的第一步到分析注塑成型產(chǎn)品整個(gè)過(guò)程,產(chǎn)品在不同載荷因子作用下的應(yīng)力分布都進(jìn)行了二維觀(guān)察分析。圖18-21為在不同載荷作用下對(duì)應(yīng)的應(yīng)力等高線(xiàn)圖。一個(gè)至關(guān)重要的點(diǎn)127,這點(diǎn)處塑料制品收到最好的拉應(yīng)力作用,這一點(diǎn)的應(yīng)力-應(yīng)變關(guān)系以及受力情況與應(yīng)力的關(guān)系曲線(xiàn)都繪制在圖22和圖23中。從圖23中受力情況與應(yīng)力關(guān)系的曲線(xiàn)來(lái)看,制品所受的拉力一直增加直到達(dá)到圖23中的載荷因子的值,這個(gè)值是1150N。這就意味著制品可以承受1150N的拉力。高于這個(gè)值的載荷會(huì)導(dǎo)致制品破壞。在圖23中,這種破壞更可能發(fā)生在試樣的固定端所在的區(qū)域,這個(gè)最大應(yīng)力為3.27x107Pa.
試樣應(yīng)力分析由于產(chǎn)品是為了進(jìn)行翹曲測(cè)試并且與拉力分析無(wú)關(guān)而使得其解釋非常有限的信息。然而在將來(lái),研究者指出產(chǎn)品的所處狀態(tài)應(yīng)該定下來(lái)以便于在不同的載荷作用下試樣的變形展開(kāi)更深入的研究。
圖18 載荷增量1作用下的相對(duì)應(yīng)力圖
圖19 載荷增量14作用下的相對(duì)應(yīng)力圖
圖20 載荷增量16作用下的相對(duì)應(yīng)力圖
圖21 載荷增量23作用下的相對(duì)應(yīng)力圖
4 結(jié)論
設(shè)計(jì)出來(lái)的模具使生產(chǎn)高質(zhì)量的翹曲測(cè)試樣品成為可能。這種成為是樣品可以決定出影響翹曲的參數(shù)。這種測(cè)試樣品以較低的價(jià)格生產(chǎn)并且只需要比較少的加工。塑料注塑成型模具的熱分析使得熱殘余應(yīng)力對(duì)產(chǎn)品的變形形狀的影響被理解,產(chǎn)品的拉伸應(yīng)力分析能夠成功的預(yù)測(cè)翹曲測(cè)試樣品能夠承受的最大拉伸應(yīng)力。
圖22 ABS材料的應(yīng)力—應(yīng)變關(guān)系曲線(xiàn)
圖23 ABS材料的應(yīng)力—載荷關(guān)系曲線(xiàn)
致謝
作者要感謝馬來(lái)西亞博特拉大學(xué)工程學(xué)院推出的本出版物。
參考文獻(xiàn)
[1] R.J. Crawford, Rubber and Plastic Engineering Design and Applica-tion, Applied Publisher Ltd., 1987, p. 110.
[2] B.H. Min, A study on quality monitoring of injection-molded parts,J. Mater. Process. Technol. 136 (2002) 1.
[3] K.F. Pun, I.K. Hui, W.G. Lewis, H.C.W. Lau, A multiple-criteria envi-ronmental impact assessment for the plastic injection molding process:a methodology, J. Cleaner Prod. 11 (2002) 41.
[4]The Determination of Injection Moulding Parameters of ThermoplasticMaterials: EX-PIMM, J. Mater. Process. Technol. 128 (2002) 113.
[5] M.R. Cutkosky, J.M. Tenenbaum, CAD/CAM Integration ThroughConcurrent Process and Product Design, Longman. Eng. Ltd., 1987,p. 83.
[6] G. Menges, P. Mohren, How to Make Injection Molds, second ed.,Hanser Publishers, New York, 1993, p 129.
[7] K.H. Huebner, E.A. Thornton, T.G. Byrom, The Finite ElementMethod for Engineers, fourth ed., Wisley, 2001, p. 1.
[8] X. Chen, Y.C. Lam, D.Q. Li, Analysis of thermal residual stressin plastic injection molding, J. Mater. Process. Technol. 101 (1999)275.