高中數學 第二章 推理與證明 2.2 反證法課件 新人教B版選修1-2.ppt
《高中數學 第二章 推理與證明 2.2 反證法課件 新人教B版選修1-2.ppt》由會員分享,可在線閱讀,更多相關《高中數學 第二章 推理與證明 2.2 反證法課件 新人教B版選修1-2.ppt(18頁珍藏版)》請在裝配圖網上搜索。
2 2直接證明與間接證明 2 2 2反證法 反證法 內容 反證法的概念 步驟 應用 1 直接證明難以下手的命題 2 至少 至多 型命題 3 否定性命題 4 某些存在性命題 本課主要學習反證法 反證法是從否定命題的結論入手 并把對命題結論的否定作為推理的已知條件 進行正確的邏輯推理 使之得到與已知條件 已知公理 定理 法則或者已經證明為正確的命題等相矛盾的結論 本課以視頻王戎的故事引入新課 從生活實例抽象出反證法的概念 步驟 讓學生感受到了反證法處處可在 也從這些具體的例子中更加熟悉反證法的步驟 并能利用反證法解決簡單的問題 證明方法的選擇 以及如何發(fā)現(xiàn)證明思路是本課的難點 由于學生的實際情況不同 且本節(jié)內容涉及過多以往知識點的應用 建議教師在使用本課件時靈活掌握 在講述反證法的應用時 采用例題與變式結合的方法 通過例1和變式1 讓學生明白 當直接證明命題難以下手時 改變其思維方向 從反面進行思考 問題可能解決得十分干脆 通過例2和例3 告訴學生 至少 至多 型命題常用反證法 采用一講一練針對性講解的方式 重點理解和鞏固反證法的運用方法 1 直接證明的兩種基本證法 綜合法和分析法 2 這兩種基本證法的推證過程和特點 由因導果 執(zhí)果索因 3 在實際解題時 兩種方法如何運用 通常用分析法尋求思路 再由綜合法書寫過程 綜合法 已知條件 結論 分析法 結論 已知條件 路邊苦李古時候有個人叫王戎 7歲那年的某天 他和小伙伴在路邊玩 看見一顆李子樹上的果實多得把樹枝都快壓斷了 小伙伴們都跑去摘 只有王戎站著沒動 他說 李子是苦的 我不吃 小伙伴摘來一嘗 李子果然苦的沒法吃 小伙伴問王戎 這就怪了 你又沒吃怎么知道李子是苦的啊 王戎說 如果李子是甜的 樹長在路邊 李子早就沒有了 李子現(xiàn)在還這么多 所以啊 肯定李子是苦的 不好吃 王戎推斷李子是苦澀的道理和你的方法一樣嗎 是什么方法 反證法是我們常見的一種證明方法 它隸屬于間接證明 今天我們就來一起探討反證法在證明問題中的應用 反證法 路邊苦李 1 如果有5只鴿子飛進兩只鴿籠 至少有3只鴿子在同一只鴿籠 對嗎 2 A B C三個人 A說B撒謊 B說C撒謊 C說A B都撒謊 則C在撒謊嗎 為什么 分析 假設C沒有撒謊 則A B都撒謊 由A撒謊 知B沒有撒謊 那么假設C沒有撒謊不成立 則C必定是在撒謊 這與B撒謊矛盾 把這種不是直接從原命題的條件逐步推得命題成立的證明方法稱為間接證明 注 反證法是最常見的間接證法 反證法 假設命題結論的反面成立 經過正確的推理 引出矛盾 因此說明假設錯誤 從而證明原命題成立 這樣的的證明方法叫反證法 歸謬法 反證法的思維方法 正難則反 例1 求證 是無理數 解析 直接證明難以下手的命題 改變其思維方向 從反面進行思考 問題可能解決得十分干脆 例1 求證 是無理數 證明 假設是有理數 則存在互質的整數m n使得 反證法的證明過程 否定結論 推出矛盾 肯定結論 即分三個步驟 反設 歸謬 存真 反設 假設命題的結論不成立 存真 由矛盾結果 斷定反設不成立 從而肯定原結論成立 歸謬 從假設出發(fā) 經過一系列正確的推理 得出矛盾 用反證法證明命題的過程用框圖表示為 肯定條件否定結論 導致邏輯矛盾 反設不成立 結論成立 證明 因為 所以 例2已知a 0 證明x的方程ax b有且只有一個根 注 結論中的有且只有 有且僅有 形式出現(xiàn) 是唯一性問題 常用反證法 不妨設方程的兩根分別為 證 由于 因此方程至少有一個根 假設方程至少存在兩個根 則 與已知矛盾 故假設不成立 結論成立 例3 已知x 0 y 0 x y 2 求證 中至少有一個小于2 分析 所謂至少有一個 就是不可能沒有 要證 至少有一個 只要證明它的反面 所有都 不成立即可 注 至少 至多 型命題常用反證法 常見否定用語 是 不是有 沒有等 不等成立 不成立都是 不都是 即至少有一個不是都有 不都有 即至少有一個沒有都不是 部分或全部是 即至少有一個是唯一 至少有兩個至少有一個有 是 全部沒有 不是 至少有一個不 全部都 應用反證法的情形 1 直接證明困難 2 需分成很多類進行討論 3 結論為 至少 至多 有無窮多個 類命題 4 結論為 唯一 類命題 正難則反 三個步驟 反設 歸謬 存真 歸繆矛盾 1 與已知條件矛盾 2 與已有公理 定理 定義矛盾 3 自相矛盾 一般地 假設原命題不成立 即在原命題的條件下 結論不成立 經過正確的推理 最后得出矛盾 因此說明假設錯誤 從而證明了原命題成立 這樣的證明方法叫做反證法 推理與證明 推理 證明 合情推理 演繹推理 直接證明 間接證明 類比推理 歸納推理 分析法 綜合法 反證法 已知 整數a的平方能被2整除 求證 a是偶數 證明 假設a不是偶數 則a是奇數 不妨設a 2n 1 n是整數 a2 2n 1 2 4n2 4n 1 4n n 1 1 a2是奇數 與已知矛盾 假設不成立 所以a是偶數- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 高中數學 第二章 推理與證明 2.2 反證法課件 新人教B版選修1-2 第二 推理 證明 反證法 課件 新人 選修
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://zhongcaozhi.com.cn/p-5527272.html