七年級數(shù)學下冊 第一章 整式的乘除 1.6 完全平方公式 1.6.1 完全平方公式教案 北師大版.doc
《七年級數(shù)學下冊 第一章 整式的乘除 1.6 完全平方公式 1.6.1 完全平方公式教案 北師大版.doc》由會員分享,可在線閱讀,更多相關《七年級數(shù)學下冊 第一章 整式的乘除 1.6 完全平方公式 1.6.1 完全平方公式教案 北師大版.doc(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1.6.1 完全平方公式 年級 七年級 學科 數(shù)學 主題 整式 主備教師 課型 新授課 課時 1 時間 教學目標 1.會推導完全平方公式,并能運用公式進行簡單的計算 2.了解完全平方公式的幾何背景 教學 重、難點 重點:會推導完全平方公式,并能運用公式進行簡單的計算 難點:會推導完全平方公式,并能運用公式進行簡單的計算 導學方法 啟發(fā)式教學、小組合作學習 導學步驟 導學行為(師生活動) 設計意圖 回顧舊知, 引出新課 1、觀察下列算式及其運算結果,你有什么發(fā)現(xiàn)? ( m + 3 )2 = ( m + 3 ) ( m + 3 ) = m2 + 3m + 3m + 9= m2 + 2 3m + 9 = m2 + 6m + 9, ( 2 + 3 x )2 = ( 2 + 3 x ) ( 2 + 3 x ) = 22 + 2 3 x + 2 3 x + 9 x2 = 4 + 2 2 3 x + 9 x2 = 4 + 12 x + 9 x2. 學生仔細觀察,交流自己的發(fā)現(xiàn);集體交流,達成共識. 2、再舉兩例驗證你的發(fā)現(xiàn). 學生小組討論、交流,驗證剛才的結論. 3、用式子表示結論 學生類比平方差公式的方法得出:( a + b )2 = a2 + 2ab + b2. 幫助學生分析公式的特征,并用文字語言敘述公式. 從學生已有的知識入手,引入課題 新知探索 例題 精講 合作探究 探究點:完全平方公式 【類型一】 直接運用完全平方公式進行計算 利用完全平方公式計算: (1)(5-a)2; (2)(-3m-4n)2; (3)(-3a+b)2. 解析:直接運用完全平方公式進行計算即可. 解:(1)(5-a)2=25-10a+a2; (2)(-3m-4n)2=9m2+24mn+16n2; (3)(-3a+b)2=9a2-6ab+b2. 方法總結:完全平方公式:(ab)2=a22ab+b2.可巧記為“首平方,末平方,首末兩倍中間放”. 變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第7題 【類型二】 利用完全平方公式求字母的值 如果36x2+(m+1)xy+25y2是一個完全平方式,求m的值. 解析:先根據(jù)兩平方項確定出這兩個數(shù),再根據(jù)完全平方公式確定m的值. 解:∵36x2+(m+1)xy+25y2=(6x)2+(m+1)xy+(5y)2,∴(m+1)xy=26x5y,∴m+1=60,∴m=59或-61. 方法總結:兩數(shù)的平方和加上或減去它們積的2倍,就構成了一個完全平方式.注意積的2倍的符號,避免漏解. 變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第6題 【類型三】 靈活運用完全平方公式的變式求代數(shù)式的值 若(x+y)2=9,且(x-y)2=1. (1)求+的值; (2)求(x2+1)(y2+1)的值. 解析:(1)先去括號,再整體代入即可求出答案;(2)先變形,再整體代入,即可求出答案. 解:(1)∵(x+y)2=9,(x-y)2=1,∴x2+2xy+y2=9,x2-2xy+y2=1,∴4xy=9-1=8,∴xy=2,∴+====; (2)∵(x+y)2=9,xy=2,∴(x2+1)(y2+1)=x2y2+y2+x2+1=x2y2+(x+y)2-2xy+1=22+9-22+1=10. 方法總結:所求的展開式中都含有xy或x+y時,我們可以把它們看作一個整體代入到需要求值的代數(shù)式中,整體求解. 引出研究本節(jié)課要學習知識的必要性,清楚新知識的引出是由于實際生活的需要 學生積極參與學習活動,為學生動腦思考提供機會,發(fā)揮學生的想象力和創(chuàng)造性 教師給出準確概念,同時給學生消化、吸收時間,當堂掌握 例2由學生口答,教師板書, 課堂檢測 1.填空題 (1)a2-4ab+( )=(a-2b)2 (2)(a+b)2-( )=(a-b)2 (3)( -2)2= -x+ (4)(3x+2y)2-(3x-2y)2= (5)(3a2-2a+1)(3a2+2a+1)= (6)( )-24a2c2+( )=( -4c2)2 2.選擇題 (1)下列等式能成立的是( ). A.(a-b)2=a2-ab+b2 B.(a+3b)2=a2+9b2 C.(a+b)2=a2+2ab+b2 D.(x+9)(x-9)=x2-9 (2)(a+3b)2-(3a+b)2計算的結果是( ). A.8(a-b)2 B.8(a+b)2 C.8b2-8a2 D.8a2-8b2 (3)在括號內選入適當?shù)拇鷶?shù)式使等式(5x-y)( )=25x2-5xy+y2成立. A.5x-y B.5x+y C.-5x+y D.-5x-y (4)(5x2-4y2)(-5x2+4y2)運算的結果是( ). A.-25x4-16y4 B.-25x4+40x2y2-16y2 C.25x4-16y4 D.25x4-40x2y2+16y2 (5)如果x2+kx+81是一個完全平方式,那么k的值是( ). A.9 B.-9 C.9或-9 D.18或-18 (6)邊長為m的正方形邊長減少n(m>n)以后,所得較小正方形的面積比原正方形面積減少了( ) A.n2 B.2mn C.2mn-n2 D.2mn+n2 3.化簡或計算 (1)(3y+2x)2 (2)-(-x3n+2-x2+n)2 (3)(3a+2b)2-(3a-2b)2 (4)(x2+x+6)(x2-x+6) (5)(a+b+c+d)2 (6)(9-a2)2-(3-a)(3-a)(9+a)2 4.先化簡,再求值. (x3+2)2-2(x+2)(x-2)(x2+4)-(x2-2)2,其中x=-. 檢驗學生學習效果,學生獨立完成相應的練習,教師批閱部分學生,讓優(yōu)秀生幫助批閱并為學困生講解. 總結提升 總結本節(jié)課的主要內容: 1.完全平方公式: 兩個數(shù)的和(或差)的平方,等于這兩個數(shù)的平方和加(或減)這兩個數(shù)乘積的2倍. (a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2. 板書設計 1.6.1 完全平方公式 (一)知識回顧 (三)例題解析 (五)課堂小結 (二)探索新知 例1、例2 (四)課堂練習 練習設計 本課作業(yè) 教材P24隨堂練習 本課教育評注(實際教學效果及改進設想)- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 七年級數(shù)學下冊 第一章 整式的乘除 1.6 完全平方公式 1.6.1 完全平方公式教案 北師大版 年級 數(shù)學 下冊 整式 乘除 完全 平方 公式 教案 北師大
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://zhongcaozhi.com.cn/p-3716395.html