2018-2019學(xué)年九年級(jí)數(shù)學(xué)下冊(cè) 第二十七章 相似本章中考演練同步練習(xí) (新版)新人教版.doc
《2018-2019學(xué)年九年級(jí)數(shù)學(xué)下冊(cè) 第二十七章 相似本章中考演練同步練習(xí) (新版)新人教版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018-2019學(xué)年九年級(jí)數(shù)學(xué)下冊(cè) 第二十七章 相似本章中考演練同步練習(xí) (新版)新人教版.doc(8頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第二十七章 相似 一、選擇題 1.xx內(nèi)江已知△ABC與△A1B1C1相似,且相似比為1∶3,則△ABC與△A1B1C1的面積比為( ) A.1∶1 B.1∶3 C.1∶6 D.1∶9 2.xx紹興學(xué)校門口的欄桿如圖1所示,欄桿從水平位置BD繞O點(diǎn)旋轉(zhuǎn)到AC位置,已知AB⊥BD,CD⊥BD,垂足分別為B,D,AO=4 m,AB=1.6 m,CO=1 m,則欄桿C端應(yīng)下降的垂直距離CD為( ) 圖1 A.0.2 m B.0.3 m C.0.4 m D.0.5 m 3.xx臨沂如圖2,利用標(biāo)桿BE測(cè)量建筑物的高度.已知標(biāo)桿BE高1.2 m,測(cè)得AB=1.6 m,BC=12.4 m,則建筑物CD的高是( ) 圖2 A.9.3 m B.10.5 m C.12.4 m D.14 m 4.xx濰坊在平面直角坐標(biāo)系中,P(m,n)是線段AB上一點(diǎn),以原點(diǎn)O為位似中心把△AOB放大到原來的兩倍,則點(diǎn)P的對(duì)應(yīng)點(diǎn)的坐標(biāo)為( ) A.(2m,2n) B.(2m,2n)或(-2m,-2n) C.(m,n) D.(m,n)或(-m,-n) 5.xx宜賓如圖3,將△ABC沿BC邊上的中線AD平移到△A′B′C′的位置,已知△ABC的面積為9,陰影部分三角形的面積為4.若AA′=1,則A′D等于( ) 圖3 A.2 B.3 C. D. 6.xx泰州如圖4,平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(9,6),AB⊥y軸,垂足為B,點(diǎn)P從原點(diǎn)O出發(fā)向x軸正方向運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)A出發(fā)向點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時(shí),點(diǎn)P,Q同時(shí)停止運(yùn)動(dòng),若點(diǎn)P與點(diǎn)Q的速度之比為1∶2,則下列說法正確的是( ) 圖4 A.線段PQ始終經(jīng)過點(diǎn)(2,3) B.線段PQ始終經(jīng)過點(diǎn)(3,2) C.線段PQ始終經(jīng)過點(diǎn)(2,2) D.線段PQ不可能始終經(jīng)過某一定點(diǎn) 二、填空題 7.xx嘉興如圖5,直線l1∥l2∥l3,直線AC分別交l1,l2,l3于點(diǎn)A,B,C,直線DF分別交l1,l2,l3于點(diǎn)D,E,F(xiàn),已知=,則=________. 圖5 8.xx南充如圖6,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延長(zhǎng)線于點(diǎn)F,若AD=1,BD=2,BC=4,則EF=________. 圖6 9.xx岳陽《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,書中有下列問題:“今有勾五步,股十二步,問勾中容方幾何?”其意思為:“如圖7,今有直角三角形,勾(短直角邊)長(zhǎng)為5步,股(長(zhǎng)直角邊)長(zhǎng)為12步,問該直角三角形能容納的正方形邊長(zhǎng)最大是多少步?”該問題的答案是________步. 圖7 三、解答題 10.xx杭州如圖8,在△ABC中,AB=AC,AD為BC邊上的中線,DE⊥AB于點(diǎn)E. (1)求證:△BDE∽△CAD; (2)若AB=13,BC=10,求線段DE的長(zhǎng). 圖8 11.xx安徽如圖9,在由邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的1010網(wǎng)格中,已知點(diǎn)O,A,B均為網(wǎng)格線的交點(diǎn). (1)在給定的網(wǎng)格中,以點(diǎn)O為位似中心,將線段AB放大為原來的2倍,得到線段A1B1(點(diǎn)A,B的對(duì)應(yīng)點(diǎn)分別為A1,B1),畫出線段A1B1; (2)將線段A1B1繞點(diǎn)B1逆時(shí)針旋轉(zhuǎn)90得到線段A2B1,畫出線段A2B1; (3)以A,A1,B1,A2為頂點(diǎn)的四邊形AA1B1A2的面積是________個(gè)平方單位. 圖9 12.xx衢州如圖10,已知AB為⊙O的直徑,AC是⊙O的切線,連接BC交⊙O于點(diǎn)F,取的中點(diǎn)D,連接AD交BC于點(diǎn)E,過點(diǎn)E作EH⊥AB于點(diǎn)H. (1)求證:△HBE∽△ABC; (2)若CF=4,BF=5,求AC和EH的長(zhǎng). 圖10 13.xx寧波若一個(gè)三角形一條邊的平方等于另兩條邊的乘積,我們把這個(gè)三角形叫做比例三角形. (1)已知△ABC是比例三角形,AB=2,BC=3,請(qǐng)直接寫出所有滿足條件的AC的長(zhǎng); (2)如圖11①,在四邊形ABCD中,AD∥BC,對(duì)角線BD平分∠ABC,∠BAC=∠ADC.求證:△ABC是比例三角形; (3)如圖②,在(2)的條件下,當(dāng)∠ADC=90時(shí),求的值. 圖11 詳解詳析 1.[解析] D ∵△ABC與△A1B1C1相似,且相似比為1∶3,∴=()2=.故選D. 2.[解析] C 由題意可知△ABO∽△CDO,根據(jù)相似三角形的性質(zhì)可得=,又AO=4 m,AB=1.6 m,CO=1 m,∴=,解得CD=0.4(m).故選C. 3.[解析] B 由題意知BE∥CD,∴△ABE∽△ACD,∴=,即=,解得CD=10.5(m).故選B. 4.[解析] B 當(dāng)放大后的△A′O′B′與△AOB在原點(diǎn)O的同側(cè)時(shí),點(diǎn)P的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(2m,2n);當(dāng)放大后的△A′O′B′與△AOB在原點(diǎn)O的異側(cè)時(shí),點(diǎn)P的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(-2m,-2n).故選B. 5.[解析] A 如圖,∵S△ABC=9,S△A′EF=4,且AD為BC邊上的中線, ∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=. ∵將△ABC沿BC邊上的中線AD平移得到△A′B′C′, ∴A′E∥AB, ∴△DA′E∽△DAB,∴=, 即=, 解得A′D=2或A′D=-(舍去).故選A. 6.[解析] B 解法一:如圖,連接AO交PQ于點(diǎn)C,過點(diǎn)C作CD⊥AB于點(diǎn)D, ∵AB⊥y軸, ∴AB∥x軸, ∴∠A=∠COP,∠AQC=∠OPC, ∴△AQC∽△OPC, ∴==2, ∴=. 同理可得CD=BO=4,AD=AB=6. ∵點(diǎn)A的坐標(biāo)為(9,6), ∴點(diǎn)C的坐標(biāo)為(3,2). 即線段PQ始終經(jīng)過點(diǎn)(3,2).故選B. 解法二:當(dāng)OP=t時(shí),點(diǎn)P的坐標(biāo)為(t,0),點(diǎn)Q的坐標(biāo)為(9-2t,6). 設(shè)直線PQ的解析式為y=kx+b(k≠0), 將P(t,0),Q(9-2t,6)代入y=kx+b, 得解得 ∴直線PQ的解析式為y=x+. 當(dāng)x=3時(shí),y=2, ∴直線PQ始終經(jīng)過點(diǎn)(3,2). 故選B. 7.[答案] 2 [解析] 由=得==,則=2. 因?yàn)橹本€l1∥l2∥l3,所以==2. 故答案為2. 8.[答案] [解析] ∵DE∥BC,AD=1,BD=2,BC=4,∴=,即=,解得DE=.∵BF平分∠ABC,∴∠ABF=∠FBC.又∵DE∥BC,∴∠FBC=∠F,∴∠ABF=∠F,∴BD=DF=2.∵DF=DE+EF,∴EF=2-=.故答案為:. 9.[答案] [解析] 如圖. 設(shè)該直角三角形能容納的正方形邊長(zhǎng)為x,則AD=12-x,F(xiàn)C=5-x. 根據(jù)題意,得△ADE∽△EFC, ∴=, 即=,解得x=. 故答案為. 10.解:(1)證明:∵AB=AC,∴∠ABC=∠ACB. ∵AB=AC,AD是BC邊上的中線,∴BD=CD,AD⊥BC. 又∵DE⊥AB,∴∠DEB=∠ADC, ∴△BDE∽△CAD. (2)∵BC=10,∴BD=BC=5. 在Rt△ABD中,有AD2+BD2=AB2, ∴AD==12. ∵△BDE∽△CAD,∴=,即=,∴DE=. 11.解:(1)如圖所示,線段A1B1即為所求. (2)如圖所示,線段A2B1即為所求. (3)由圖可得,四邊形AA1B1A2為正方形, ∴四邊形AA1B1A2的面積是()2=()2=20. 故答案為:20. 12.[解析] (1)根據(jù)切線的性質(zhì)可證明∠CAB=∠EHB,由此即可解決問題; (2)連接AF.由△CAF∽△CBA,推出AC2=CFCB=36,可得AC=6,AB==3 ,AF==2 ,由Rt△AEF≌Rt△AEH,推出AF=AH=2 .設(shè)EF=EH=x.在Rt△EHB中,可得(5-x)2=x2+()2,解方程即可解決問題. 解:(1)證明:∵AC是⊙O的切線,∴CA⊥AB. ∵EH⊥AB,∴∠EHB=∠CAB. 又∵∠EBH=∠CBA,∴△HBE∽△ABC. (2)如圖,連接AF. ∵AB是⊙O的直徑,∴∠AFB=90. ∵∠C=∠C,∠CAB=∠AFC, ∴△CAF∽△CBA,∴=, ∴AC2=CFCB=36, ∴AC=6,AB==3 ,AF==2 . ∵=,∴∠EAF=∠EAH. ∵EF⊥AF,EH⊥AB,∴EF=EH. 又∵AE=AE,∴Rt△AEF≌Rt△AEH, ∴AF=AH=2 .設(shè)EF=EH=x. 在Rt△EHB中,(5-x)2=x2+()2, ∴x=2,∴EH=2. 13.解:(1)AC的長(zhǎng)為或或. (2)證明:∵AD∥BC, ∴∠ACB=∠CAD. 又∵∠BAC=∠ADC, ∴△ABC∽△DCA, ∴=,即CA2=BCAD. ∵AD∥BC, ∴∠ADB=∠CBD. ∵BD平分∠ABC, ∴∠ABD=∠CBD, ∴∠ADB=∠ABD, ∴AB=AD, ∴CA2=BCAB, ∴△ABC是比例三角形. (3)如圖,過點(diǎn)A作AH⊥BD于點(diǎn)H. ∵AB=AD, ∴BH=BD. ∵AD∥BC,∠ADC=90, ∴∠BCD=90, ∴∠BHA=∠BCD=90. 又∵∠ABH=∠DBC, ∴△ABH∽△DBC, ∴=, ∴ABBC=DBBH, ∴ABBC=BD2. 又∵ABBC=AC2, ∴BD2=AC2, ∴=.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2018-2019學(xué)年九年級(jí)數(shù)學(xué)下冊(cè) 第二十七章 相似本章中考演練同步練習(xí) 新版新人教版 2018 2019 學(xué)年 九年級(jí) 數(shù)學(xué) 下冊(cè) 第二 十七 相似 本章 中考 演練 同步 練習(xí) 新版 新人
鏈接地址:http://zhongcaozhi.com.cn/p-3699832.html