冷滾打機(jī)床多功能夾具設(shè)計(jì)說(shuō)明書(shū)
冷滾打機(jī)床多功能夾具設(shè)計(jì)說(shuō)明書(shū),冷滾打,機(jī)床,多功能,夾具,設(shè)計(jì),說(shuō)明書(shū),仿單
Study on the influence of rolling speed on rack cold roll-beating profileLimu Cui, Jiming XiaoFaculty of Mechanical and Precision Instrument Engineering,Xi’an University of technology, Xi, an 710048Abstract. As a new type of precision plastic forming technology, with material saving, low energy consumption, less pollution, high efficiency and good performance of products, high-speed cold roll-beating got rapid development. This paper studies the profile determinants of cold roll-beating. The impact of characterized parameters on alveolar outline forming is quantitatively described. The characterized parameters are alveolar width and alveolar bump height on both sides and so on. At the same time, experiment with single factor of roller rotation speed is performed, analysing the influence law of rolling speed on alveolar profile. Cold roll-beating equipment are carried out on cold roll -beating equipment modified from horizontal milling machine, the forming profile is analysed, so as to further improve the processing conditions and process parameters, providing a theoretical basis to deduce the generation of defects. Key words: cold roll-beating, flank profile, simulation, experiments1 IntroductionBased on the plasticity of material, precision plastic forming technology is a less cutting or no cutting method, the work piece is processed under the external force of tool and die. Cold roll-beating forming technology is a near net shape processing method. Taking advantage of the plasticity of metal, the blank is rolled and struck by high-speed rotating roller, forcing the metal flow, thereby forming the profile of work piece. As a new type of precision plastic forming technology, cold roll-beating forming technology can processed the product with good performance, high efficiency, material saving, low energyconsumption, less pollution and other significant characteristics, which aroused the attention of many scholars at home and abroad [1,2].In 1960’s, Grob company of Swiss applied cold roll-beating technology to the machining of spline, but its core techniques still secret to abroad[3]. Domestic, the study of cold roll-beating forming technology began in the 1970’s, the main research focused oncold roll-beating forming mechanism, roller’s design, roller’s installation method, parameter optimization[4,5,6]. Profile forming accuracy is the key factors that influence racktransmission precision and smoothness. During cold roll-beating forming process, the instability of metal plastic flow made alveolar profile’s change rule more complicated. Quantitative describe metal flow law to profile change is very difficult. At home and abroad, research on profile change during cold roll-beating forming is less. Study on the influence of rolling speed to profile form during rack cold roll-bearing forming in this article. On the basis of forming principle, to simulate influence law of rolling speed to alveolar width,alveolar both sides' bump height, distance between bump height and alveolar center, alveolar depth by using ABAQUS, to study the effect of rolling speed to alveolar profile, and verified by test, can provide reference for quality control of cold roll-beating forming.2 Cold roll-beating forming mechanismCold roll-beating forming which put the entity material function surface as the research object, local dynamic loading adopted by the way of discontinuous reciprocating struck, metal materials accumulation formed by forcing local flow, gradually required functionality surface formed . Its working principle is shown in the figure 1[7,8].Figure 1: High-speed cold roll-beating forming principle diagram3 Simulation analysis3.1 Establishment of simulation modelCold roll-beating dynamic model established in ABAQUS software, forming process simulated in ABAQUS. During cold rolling forming, the contact time between roller and work piece is short, and friction decreases under the action of roller rotates, the temperature of deformation part changed slowly, so assume uniform temperature and friction. Due to deforming force generated by the rolling and collisions between roller and work piece,negligible effect of roller rotation on rolling force .The work piece material in-compressible and the initial isotropic[9,10].In order to shorten calculation time, improve calculation efficiency, the model assumed and appropriate simplified. For does not affect the simulation results, roller shaft save installed, according to a certain movement and spatial relationship, rollers and work piece model is set up as shown in the figure 2. The roller radius is 72 mm, the work piece length is 13 mm, width is 24 mm and height is 8 mm. Rolling radius is 73 mm, to 1 mm in depth. Choose analytical rigid as roller material, the work piece material is LY12 , density is 2770 kg/m3, the elastic modulus is 73GPa , Poisson's ratio is 0.33.Figure 2: The finite element model of cold roll-beating forming3.2 Rolling speed effects on profileWhen roller hits blank, rolling gear addendum directly hit on the blank surface, form the alveolar bottom. And metal on both sides of rollers, a part formed alveolar wall squeezed by rollers, the other part formed the bumps on either side of alveolar along roller side wall upward mobility, then the bump flow to the part of less resistance, thus forming the outline of alveolar shape, as shown in the figure 3. The alveolar width is B, alveolar bump on the left side is hL, the right is hR , the distance between alveolar center and bump height is L, alveolar depth is H.Figure 3: Schematic diagram of alveolar profileDuring cold roll-beating forming, roller rotation speed is one of the key factors affecting metal plastic flow, on the condition of different rolling speed, the metal material of heat, heat conduction rate, deformation temperature, deformation rate, the flow of metal are not identical, thus large difference existed in the final forming of alveolar outline. When rolling model remains unchanged, and under the condition of other parameters do not change, change the rolling speed, the alveolar profile has changed. As shown in figure 4, the changes of rolling speed affect the alveolar profile. When roller revolution speed increases from 500r/min to 750r/min, alveolar bottom stress is large, the stress mainly concentrated in the root. When roller revolution speed is 1000 r/min, alveolar become wider, stress of alveolar root and on either side of alveolar are large, alveolar profile shape out of rules and a slight deviation between alveolar profile shape and roller. Revolution speed increases to 2000 r/min, less stress and scattered into the work piece, the stress concentration in root and work piece inside. When the revolution speed reach to 3000 r/min, there is no obvious change in alveolar profile surface stress, but stress between two alveolar bump is large, the inside of work piece is not directly exposed to roller , but the stress is large too. Revolution speed is 4000 r/min, the alveolar profile is relatively perfect, alveolar root and alveolar flank and the work piece internal stress is moderate, the distribution is uniform.(a)n=500 (b)n=750 (c)n=1000(d)n=2000 (e)n=3000 (f)n=4000Figure 4: Alveolar profile under different rolling speedIn ABAQUS software, at different rolling speed, each alveolar parameters measuring and data analysis. Observe the change trend of alveolar parameters; curves are as shown in the figure 5 to figure 8.Figure 5: Alveolar width curve changed by rolling speedFigure 6: Alveolar both sides' bump height curve changed by rolling speedThe figure 5 is alveolar width curve changed by rolling speed, the roller revolution speed increasing, the alveolar width increases firstly and then decreases to substantially unchanged when reaching a certain rotating speed. Strain rate increased by roller revolution speed increasing, the true stress becomes large, alveolar width also increases. The revolution speed is higher, each time interval of roller stroke blank metal is shorter. In a certain period of time, the number of roller hit gear blank increased, the first work piece’s material is flowing as plastic, the next struck again, which made the flow resistance of materials reduced in a certain extent, rolling deformation force also decrease, the strain rate decreased, so the space width decreases.The figure 6 is the alveolar both sides' bump height curve changed by rolling speed, the alveolar both sides' bump height increased by the revolution speed increasing. In a certain range of rolling speed increased, caused the strain rate changed small, the degree of materials’ hardening is litter, alveolar both sides increased quickly. With the revolution speed continues increasing, the material hardening degree is high, and the metal flow decreased, thus alveolar both sides decreased.Figure 7: Alveolar depth curve changed by rolling speedFigure 8: The curve of distance between bump and alveolar center changed by rolling speedThe figure 7 is the alveolar depth curve changed by rolling speed, the alveolar depth increased by the roller revolution speed increasing. When the roller revolution speed increases, the number of the alveolar bottom metal hit by roller per unit time increased, metal flow rate increased, plastic strain increased, the alveolar depth increases. The greater the rolling speeds, the stronger the dynamic impact effects. While the plastic deformation region concentrated, limit of plastic deformation zone and elastic deformation area will become smaller, and the elastic strain zone decreases, alveolar depth decreases.The figure 8 is the curve of distance between bump and alveolar center changed by rolling speed. The distance between bump and alveolar center increased first and then decreased by the roller revolution speed increasing. The changing trends of distance between bump and alveolar center are related to bump and alveolar depth. The change rules are roughly the same with bump and alveolar depth.4 Study of cold roll-beating experimentThe purpose of this experiment is that according to the cold roll-beating experiment, by changing the roller revolution speed to measure the final alveolar forming outline, then compares and analysis the experiment results and simulation results. The experiment is carried out with self- developed cold roll- beating experimental equipment, and the roller material is 40Cr, the work piece material is LY12 and red copper.4.1 The device of experimentThis experiment is done on the horizontal milling machine; the cutter is replaced by the special cold-roll beating device. As shown in the figure 9 is the physical picture of cold-roll beating device.4.2 Analysis of experiment resultsIn this paper, the cold-roll beating experiment is conducted on hard aluminum and red copper, the roller module is 2mm, and the roller revolution radius is 49mm, rotation radius is 24mm .As shown in the figure 10 is the cold roll-beating results of aluminum, the roller revolution speed is 1500r/min. In the picture the alveolar outline can be clearly seen, the addendum rolled up can be obviously observed in the local amplification figure, this is because metal flow that the roller extrudes the alveolar bottom. At the same time, the bump height of middle alveolar both sides is roughly equal, and the outline is uniform and symmetric, the two are consistent with the previous simulation results. This is due to that the metal of close to middle alveolar side is extruded by the two rollers, the metal flowing restricted at a certain extent, so there was no obvious difference of bumps on both sides.As shown in the figure 11 is the cold roll-beating results of copper, the depth of the roller hit into the work piece is 1mm, the feed speed of work piece is 60mm/min, the roller revolution speed is 1500r/min. From the figure the metal plastic liquidity of copper is bigger than the hard aluminum can be clearly seen along the tangential; the hardness of copper is smaller than hard aluminum. When the depth of the roller hit into the work piece at the equal lever and the same with the feed speed of work piece , the bigger hardness, the smaller metal plastic liquidity. The materials have lower hardness, the plastic flow is relatively easy, so the metal plastic liquidity of copper along tangential is bigger than hard aluminum. The metal flowed along tangential not only affects the contour shape of material, but also should increase the operation to get rid. This not only waste materials, but also make the processing time longer, reduce the production efficiency, so research the alveolar profile of roller and process parameters is a key to improve the quality of cold-roll beating forming.Figure 9: Cold roll-beating machineFigure 10: Hard aluminum cold roll beating test resultsFigure 11: Copper cold roll-beating test results5 Conclusion(1) Using the alveolar width, alveolar bump on both sides, the distance between alveolar center and bump height, alveolar depth to quantitatively show the alveolar profile after formed. The dynamic simulation models of cold roll-beating established in the ABAQUS, and the rack cold roll-beating simulated, the results of simulation analyzed.(2)Conducting the single factor variables experiments by changing the roller revolution speed, analyzing the metal flow law, then get the influence law of roller revolution speed to alveolar profile. In the later phase, multiple factors experiments and study interactions between multiple factors will conducted, which supply more theoretical basis for improve the quality of cold roll- beating.AcknowledgementThe corresponding author was Limu Cui. This research is supported by National Natural Science Foundation of China (Grant No. 51475366, 51475146) and Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM5074).References1. Zhang Lu, Li Yan, Yang Mingshun, et al. Recent Development of Incremental Forming [J]. Aerospace material process, pp. 32-38(2011)2. Zhao Ning, Mao Yongjie. The modern machinery manufacturing technology and development trend [J]. Science and technology innovation and application, pp.125(2013)3. Wang Zhongren, Teng Bugang, Tang Zejun. New Development on Technology of Plasticity[J]. China Mechanical Engineering, 20(1), pp. 108-112(2009)4. Cui Fengkui, Zhu Wenjuan, Wang Xiaoqiang, Zhang Fengshou. Current research and development trends of high-speed cold rolling technology[J]. Journal of Henan Polytechnic University (Natural Science), 31(2), pp. 191-195(2012)5. Li Yan, Yang Mingshun, Li Bin, et al. Dynamics Simulation and Analysis of Lead Screw Cold Roll-Beating[J]. Journal of Xi’an University of Technology, 25(4), pp. 383-387(2009)6. Cui Fengkui, Guo Chao, Li Yuxi. 40Cr Steel Plastic Flow Stress and Constitutive Relations[J]. Journal of Henan Polytechnic University (Natural Science), 33(6), pp. 1-5(2012)7. Zhang Lu, Yang Mingshun, Li Yan, et al. Analytic method and its modification for deformation force of high-speed cold roll-beating forming[J]. Journal of Plasticity Engineering, 18(5), pp. 1-7(2011)8. Cui Fengkui, Xu Yongfu, Zhao Wei.Research on metal microstructure deformation of splines manufactured by cold rolling,milling and cutting processes[J]. Forging and Stamping Technology, 33(2), pp. 70-74(2008)9. Zhang Lu, Li Yan, Yang Mingshun, et al. Study on Metal Flowing of Lead Screw Cold Roll-beating Forming[J]. China Mechanical Engineering, 23(13), pp. 1623-1628(2012)10. Zhao Zhiyuan,Yang Mingshun, Yuan Qilong, et al. Deformation Force Simulation of Lead Screw Cold Roll-beating Based on ABAQUS[J]. Foundry Technology, 32(8), pp. 1165-1169(2011)軋制速度對(duì)機(jī)架冷輥跳動(dòng)剖面影響的研究栗木翠, 鳴鳴小機(jī)械精密儀器工程系,西安理工大學(xué), 西安, 710048抽象 . 作為一種新型精密塑性成形技術(shù), 具有的 材料節(jié)約、能耗低、污染少、效率高、產(chǎn)品性能好、高速冷滾打得到了飛速的發(fā)展。本文研究了冷滾軋的剖面決定因素。定量描述了特征參數(shù)對(duì)肺泡輪廓形成的影響。其特征參數(shù)為牙槽寬度和牙槽凹凸高度。同時(shí), 對(duì)滾子轉(zhuǎn)速單因素進(jìn)行了試驗(yàn), 分析了軋制速度對(duì)牙槽剖面的影響規(guī)律。對(duì)臥式銑削機(jī)改造的冷滾軋?jiān)O(shè)備進(jìn)行了冷輥跳動(dòng)設(shè)備的分析, 對(duì)成形剖面進(jìn)行了進(jìn)一步的改進(jìn), 為進(jìn)一步提高加工條件和工藝參數(shù)提供了理論依據(jù), 為推斷出缺陷的產(chǎn)生。 關(guān)鍵詞: 冷輥跳動(dòng), 側(cè)面剖面, 模擬, 實(shí)驗(yàn)1 介紹在材料塑性的基礎(chǔ)上, 精密塑性成形技術(shù)是一種減少切削或無(wú)切削的方法, 工件在刀具和模具的外力下加工。冷彎輥成形技術(shù)是一種近凈形狀加工方法。利用金屬的塑性, 通過(guò)高速旋轉(zhuǎn)滾筒軋制和撞擊毛坯, 迫使金屬流動(dòng), 從而形成工件輪廓。冷彎輥成形技術(shù)作為一種新型的精密塑性成形技術(shù), 可以加工出性能好、效率高、材料節(jié)約、能耗低的產(chǎn)品。消費(fèi)、污染等顯著特征, 引起國(guó)內(nèi)外眾多學(xué)者的關(guān)注 [12] .1960 年, 瑞士格勞博公司將冷軋輥技術(shù)應(yīng)用于花鍵的加工, 但其核心技術(shù)仍為海外保密 [3] 。國(guó)內(nèi), 冷軋輥成形技術(shù)的研究始于 1970, 主要研究集中在冷滾軋成形機(jī)構(gòu)、滾筒設(shè)計(jì)、滾筒安裝方法、參數(shù)優(yōu)化 [45、6] 。型材成形精度是影響機(jī)架的關(guān)鍵因素傳動(dòng)精度和平滑度。在冷彎輥成形過(guò)程中, 金屬塑性流動(dòng)的不穩(wěn)定性使得牙槽剖面的變化規(guī)律更為復(fù)雜。定量描述金屬流動(dòng)規(guī)律對(duì)剖面變化是非常困難的。國(guó)內(nèi)外對(duì)冷彎輥成形過(guò)程中剖面變化的研究較少。在機(jī)架冷輾壓成形過(guò)程中, 軋制速度對(duì)型材形態(tài)的影響研究。在形成原理的基礎(chǔ)上, 模擬了軋制速度對(duì)牙槽寬度的影響規(guī)律,牙槽兩側(cè)的凹凸高度、凹凸高度與肺泡中心之間的距離、牙槽深度的應(yīng)用, 研究了軋制速度對(duì)牙槽剖面的影響, 并通過(guò)試驗(yàn)驗(yàn)證, 可為冷軋輥的質(zhì)量控制提供參考。形成。2 冷滾打成型機(jī)構(gòu)將實(shí)體材料功能面作為研究對(duì)象的冷彎輥成形, 局部動(dòng)態(tài)加載采用不連續(xù)往復(fù)撞擊的方式, 通過(guò)強(qiáng)制局部流形成的金屬材料積累, 逐漸需要形成的功能曲面。其工作原理見(jiàn)圖 1 [78] .圖 1 高速冷輥跳動(dòng)成形原理圖3 仿真分析3.1 仿真模型的建立在 abaqus 軟件中建立了冷軋輥跳動(dòng)動(dòng)態(tài)模型, 模擬了 abaqus 的成形過(guò)程。在冷軋成型過(guò)程中, 軋輥與工件之間的接觸時(shí)間短, 在滾子旋轉(zhuǎn)的作用下摩擦力減小, 變形部分的溫度變化緩慢, 因此應(yīng)采用均勻的溫度和摩擦力。由于軋輥和工件之間的軋制和碰撞產(chǎn)生的變形力,對(duì)滾子旋轉(zhuǎn)對(duì)軋制力的影響為微不足道。工件材料可壓縮和初始各向同性 [910] .為了縮短計(jì)算時(shí)間, 提高計(jì)算效率, 模型假設(shè)和適當(dāng)簡(jiǎn)化。對(duì)于不影響仿真結(jié)果, 輥軸保存安裝, 根據(jù)一定的運(yùn)動(dòng)和空間關(guān)系, 對(duì)滾筒和工件模型進(jìn)行了設(shè)置, 如圖 2 所示。滾筒半徑為 72 毫米, 工件長(zhǎng)度為 13 毫米, 寬度為 24 毫米, 高度為 8 毫米. 軋制半徑為 73 毫米, 深度為 1 毫米。選擇分析剛性為滾筒材料, 工件材質(zhì)為 LY12, 密度為2770 千克/米 3, 彈性模量為 73GPa, 泊松比為 0.33.圖 2: 冷滾軋成形的有限元模型3.2 軋制速度對(duì)型材的影響當(dāng)滾子命中空白時(shí), 滾動(dòng)齒輪的附錄直接擊中空白表面, 形成肺泡底部。和金屬在滾筒兩側(cè), 部分形成了由滾筒擠壓的牙槽壁, 另一部分形成了牙槽兩側(cè)的凸起沿輥側(cè)壁向上移動(dòng), 然后將凹凸流到部分阻力較小, 從而形成肺泡輪廓。形狀, 如圖 3 所示。肺泡寬度為 B, 左側(cè)的肺泡突起為 h L, 右側(cè)為 h R ,肺泡中心與凹凸高度之間的距離為 L, 肺泡深度為 h.圖 3: 齒槽輪廓示意圖在冷輾壓成形過(guò)程中, 軋輥轉(zhuǎn)速是影響金屬塑性流動(dòng)的關(guān)鍵因素之一, 在不同軋制速度、熱傳導(dǎo)速率、變形溫度、變形速率、流量金屬不完全相同, 因此在肺泡輪廓的最終形成中存在較大的差異。當(dāng)軋制模型保持不變時(shí), 在其它參數(shù)不變的情況下, 改變軋制速度, 使齒槽剖面發(fā)生變化。如圖 4 所示, 滾動(dòng)速度的變化會(huì)影響牙槽剖面。當(dāng)滾子轉(zhuǎn)速?gòu)?500 r/分鐘增加到 750 r/分鐘時(shí), 肺泡底部應(yīng)力較大, 應(yīng)力主要集中在根部。當(dāng)滾子轉(zhuǎn)速為 1000/分鐘時(shí), 肺泡變寬, 肺泡根部和肺泡兩側(cè)的應(yīng)力較大, 肺泡輪廓形狀不規(guī)則, 牙槽形狀與滾筒之間稍有偏差。轉(zhuǎn)速增加到 2000 r/分鐘, 減少應(yīng)力, 分散到工件, 在根部和工件內(nèi)的應(yīng)力集中。當(dāng)轉(zhuǎn)速達(dá)到 3000/分鐘時(shí), 牙槽剖面表面應(yīng)力沒(méi)有明顯的變化, 但兩個(gè)牙槽凸度之間的應(yīng)力較大, 工件內(nèi)部不直接暴露在滾筒上, 但應(yīng)力也較大。轉(zhuǎn)速為 4000 r/分鐘, 肺泡剖面相對(duì)完善, 肺泡根部和肺泡側(cè)面和工件內(nèi)應(yīng)力適中, 分布均勻。(a) n = 500 ( b)n= 750 (c)n= 1000(d) n = 2000 ( e)n= 3000 (f)n= 4000圖 4: 不同軋制速度下的牙槽剖面在 ABAQUS 軟件中, 在不同的軋制速度下, 每個(gè)齒槽參數(shù)的測(cè)量和數(shù)據(jù)分析。觀察肺泡參數(shù)的變化趨勢(shì);曲線如圖 5 所示, 見(jiàn)圖 8。圖 5: 通過(guò)軋制速度改變牙槽寬度曲線圖 6: 牙槽兩側(cè)的凹凸高度曲線隨軋制速度而變化圖 5 為齒槽寬度曲線隨軋制速度而改變, 滾子轉(zhuǎn)速增加, 齒槽寬度先增大后減小到一定轉(zhuǎn)速時(shí)大幅度改變。隨著滾子轉(zhuǎn)速的增加, 應(yīng)變速率增大, 真正的應(yīng)力變大, 肺泡寬度也增大。轉(zhuǎn)速越高, 每一次軋輥行程毛坯金屬的間隔時(shí)間越短。在一定的時(shí)間內(nèi), 軋輥命中齒輪坯的數(shù)量增加, 第一工件的材料作為塑料流動(dòng), 下一次再次撞擊, 使材料的流動(dòng)阻力在一定程度上降低, 軋制變形力也降低,應(yīng)變速率減小, 空間寬度減小。圖 6 為牙槽兩側(cè)的凹凸高度曲線隨軋制速度而變化, 肺泡兩側(cè)的凹凸高度隨轉(zhuǎn)速的增加而增大。在一定范圍內(nèi)的軋制速度增加, 導(dǎo)致應(yīng)變率變小, 材料硬化程度為凋落物, 肺泡兩側(cè)迅速增加。隨著轉(zhuǎn)速的不斷提高, 材料硬化程度高, 金屬流減小, 肺泡兩側(cè)減小。圖 7: 通過(guò)軋制速度改變牙槽深度曲線圖 8: 按軋制速度變化的凹凸槽中心距離曲線圖 7 為齒槽深度曲線隨軋制速度變化, 齒槽深度隨輥輪轉(zhuǎn)速的增加而增大。當(dāng)輥道轉(zhuǎn)速增大時(shí), 齒槽底金屬的數(shù)量隨機(jī)組時(shí)間的推移而增加, 金屬流速增加, 塑性應(yīng)變?cè)黾? 肺泡深度增大。滾動(dòng)速度越大, 動(dòng)態(tài)沖擊效應(yīng)越強(qiáng)。塑性變形區(qū)集中、塑性變形區(qū)極限和彈性變形區(qū)變小, 彈性應(yīng)變區(qū)減小, 肺泡深度減小。圖 8 是凸點(diǎn)和牙槽中心之間的距離曲線, 由軋制速度改變。隨著滾子轉(zhuǎn)速的增加, 凸點(diǎn)與牙槽中心之間的距離先增大后減小。凹凸和肺泡中心距離的變化趨勢(shì)與凹凸和肺泡深度有關(guān)。變化規(guī)則大致相同的凹凸和肺泡深度。4 冷軋輥跳動(dòng)實(shí)驗(yàn)研究本實(shí)驗(yàn)的目的是根據(jù)冷軋輥跳動(dòng)實(shí)驗(yàn), 通過(guò)改變滾子轉(zhuǎn)速來(lái)測(cè)量最終的牙槽成形輪廓, 然后比較分析實(shí)驗(yàn)結(jié)果和仿真結(jié)果。本實(shí)驗(yàn)采用自行研制的冷滾軋?jiān)囼?yàn)裝置, 軋輥材料為 40Cr, 工件材料為 LY12 和紅銅。4.1 實(shí)驗(yàn)裝置本試驗(yàn)是在臥式銑床上進(jìn)行的;刀具被特殊的冷輥跳動(dòng)裝置所取代。如圖 9 所示, 是冷輥跳動(dòng)裝置的物理圖像。4.2 實(shí)驗(yàn)結(jié)果分析本文對(duì)硬鋁和紅銅進(jìn)行了冷軋輥跳動(dòng)試驗(yàn), 軋輥模塊為 2mm, 軋輥回轉(zhuǎn)半徑為 49mm, 旋轉(zhuǎn)半徑為 24mm。如圖 10 所示, 鋁的冷軋輥跳動(dòng)的結(jié)果, 滾筒轉(zhuǎn)速是 1500 r/分鐘。在圖片中可以清楚地看到肺泡輪廓, 在局部放大圖中可以明顯觀察到增編, 這是因?yàn)榻饘倭鞯臐L筒擠出了肺泡底部。同時(shí), 中間牙槽兩側(cè)的凹凸高度大致相等, 輪廓均勻?qū)ΨQ(chēng), 兩者與以往的模擬結(jié)果一致。這是由于接近中牙槽側(cè)的金屬被兩個(gè)滾筒擠壓, 金屬在一定程度上受限, 因此兩側(cè)的顛簸沒(méi)有明顯的差異。如圖 11 所示的是銅的冷滾軋結(jié)果, 滾筒撞擊工件的深度為 1mm, 工件的進(jìn)料速度為60 毫米/分, 輥輪轉(zhuǎn)速為 1500/分鐘。從圖上看, 金屬塑料的流動(dòng)性比硬鋁更大, 可以沿切線清晰地看到;銅的硬度比硬鋁小。當(dāng)軋輥的深度撞到工件的同等杠桿和進(jìn)料速度相同的工件時(shí), 硬度越大, 金屬塑料的流動(dòng)性越小。該材料硬度較低, 塑性流動(dòng)相對(duì)容易, 因此銅沿切線的金屬塑性流動(dòng)性大于硬鋁。金屬沿切線流動(dòng)不僅影響材料的輪廓形狀, 而且還應(yīng)增加操作的去除。這不僅浪費(fèi)了材料, 而且使加工時(shí)間更長(zhǎng), 降低了生產(chǎn)效率, 因此研究軋輥的齒槽剖面和工藝參數(shù)是提高冷軋輥跳動(dòng)質(zhì)量的關(guān)鍵。圖 9: 冷打輥機(jī)圖 10: 硬鋁冷軋輥跳動(dòng)試驗(yàn)結(jié)果圖 11: 銅冷輥跳動(dòng)試驗(yàn)結(jié)果5 結(jié)論(1) 使用牙槽寬度、兩側(cè)肺泡腫塊、肺泡中心與凹凸高度之間的距離、肺泡深度定量顯示后形成的肺泡輪廓。建立了基于 ABAQUS 的冷滾軋動(dòng)態(tài)仿真模型, 并對(duì)機(jī)架冷滾打模擬結(jié)果進(jìn)行了仿真分析.(2) 通過(guò)改變滾筒轉(zhuǎn)速, 分析金屬流動(dòng)規(guī)律, 進(jìn)行單因素變量實(shí)驗(yàn), 得出滾子轉(zhuǎn)速對(duì)齒槽剖面的影響規(guī)律。在后一階段, 多因素實(shí)驗(yàn)和研究多因素相互作用, 為提高冷軋輥的質(zhì)量提供了理論依據(jù).確認(rèn)相應(yīng)的作者是栗木崔。本研究由中國(guó)國(guó)家自然科學(xué)基金 (51475366、51475146) 和陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃 (批準(zhǔn)號(hào): 2016JM5074) 支持。引用1. 明順、李燕、楊等。漸進(jìn)成形的最新發(fā)展 [J]。航空航天材料工藝, pp 32-38 (2011)2. 趙寧, 毛永杰?,F(xiàn)代機(jī)械制造技術(shù)與發(fā)展趨勢(shì) [J]??萍紕?chuàng)新與應(yīng)用, pp 125 (2013)3. 王孫仲仁, 騰布崗, 唐澤軍。塑性技術(shù)的新發(fā)展 [J]。中國(guó)機(jī)械工程, 20 (1), pp 108-112 (2009)4. 崔鳳奎、朱文具盒、王小強(qiáng)、張豐收。高速冷軋技術(shù)的研究現(xiàn)狀與發(fā)展趨勢(shì) [J]。河南學(xué)報(bào)理工大學(xué) (自然科學(xué)), 31 (2), pp 191-195 (2012) 5. 李燕、陽(yáng)明順、李倉(cāng)等. 鉛螺桿冷軋輥的動(dòng)力學(xué)仿真與分析 [J]。西安理工大學(xué)學(xué)報(bào), 25 (4), pp 383-387 (2009)6. 崔鳳奎、郭潮、李漁. 40Cr 鋼塑性流動(dòng)應(yīng)力及本構(gòu)關(guān)系 [J]。
收藏