課題研究背景
隨著科學(xué)技術(shù)的迅速發(fā)展,國民經(jīng)濟各部門所需求的多品種、多功能、高精度、高品質(zhì)、高度自動化的技術(shù)裝備的開發(fā)和制造,促進了先進制造技術(shù)的發(fā)展。同時,隨著社會進步,人們對加工精度的要求越來越高,對精密和超精密加工的需求也日益增多,精密加工廣泛的應(yīng)用于制造生產(chǎn)中,對機床精度的要求也進一步提高。銑鉆工藝是加工孔類工藝的基礎(chǔ)部分,只要銑鉆工藝的加工精度提高了,在后面的加工工藝過程就會更加簡潔,提高加工效率,節(jié)省時間,提高經(jīng)濟效益。
隨著社會的不斷發(fā)展,高效是各個生產(chǎn)商不斷追求的目標(biāo),數(shù)控技術(shù)得到推崇。
當(dāng)今,銑鉆加工技術(shù)的發(fā)展趨勢是向著采用超硬刀具,發(fā)展高速、高效、高精度銑鉆新工藝,裝備CNC數(shù)控銑鉆床的方向發(fā)展。
一 鉆床介紹
1概述
鉆床系指主要用鉆頭在工件上加工孔的機床。通常鉆頭旋轉(zhuǎn)為主運動,鉆頭軸向移動為進給運動。鉆床結(jié)構(gòu)簡單,加工精度相對較低,可鉆通孔、盲孔,更換特殊刀具,可擴、锪孔,鉸孔或進行攻絲等加工。鉆床可分為下列類型:
(1)臺式鉆床:可安放在作業(yè)臺上,主軸垂直布置的小型鉆床。
(2)立式鉆床:主軸箱和工作臺安置在立柱上,主軸垂直布置的鉆床。
(3)搖臂鉆床:搖臂可繞立柱回轉(zhuǎn)、升降,通常主軸箱可在搖臂上作水平移動的鉆床。它適用于大件和不同方位孔的加工。
(4)銑鉆床:工作臺可縱橫向移動,鉆軸垂直布置,能進行銑削的鉆床。
(5)深孔鉆床:使用特制深孔鉆頭,工件旋轉(zhuǎn),鉆削深孔的鉆床。
(6)平端面中心孔鉆床:切削軸類端面和用中心鉆加工的中心孔鉆床。
(7)臥式鉆床:主軸水平布置,主軸箱可垂直移動的鉆床。
2.檢驗標(biāo)準(zhǔn)
鉆床相關(guān)標(biāo)準(zhǔn)與其他金屬切削機床相關(guān)標(biāo)準(zhǔn)大體相同,其專用標(biāo)準(zhǔn)有:GB6477.4-86《金屬切削機床術(shù)語鉆床》,GB2815-89、JB/T5763-91《鉆床聯(lián)接尺寸標(biāo)準(zhǔn)》,GB9461-88、JB/Z108-89《搖臂鉆床參數(shù)及系列型譜標(biāo)準(zhǔn)》,GB4017-97、JB/T6335-92《搖臂鉆床精度及技術(shù)條件》,JB/GQ1092-86、JB/GQ1087-86《滑座搖臂鉆床精度及技術(shù)條件》,JB4242.1~JB4242.3-86、JB/T6336-92《萬向搖臂鉆床精度及技術(shù)條件》,GB2813-89、JB/Z13689《臺式鉆床參數(shù)及系列型譜》,JB5756-91《臺式鉆床主軸端部》,JB/T5764-91《臺式鉆床主軸技術(shù)條件》,JB5246-91《臺式鉆床精度》,JB/T3061-92《臺式鉆床技術(shù)條件》,GB2814-89、JB/Z125-89《立式鉆床參數(shù)及系列型譜》,GB4019-97、JB/T3769-93《方柱立式鉆床精度及技術(shù)條件》,GB4018-83、JB/T3768-93《圓柱立式鉆床及技術(shù)條件》,JB3756-84《輕型圓柱立式鉆床精度》,JB4148-85《十字工作臺立式鉆床精度》等,出口產(chǎn)品不得低于一等品。
3.檢驗項目
除按相關(guān)標(biāo)準(zhǔn)和相應(yīng)標(biāo)準(zhǔn)檢驗外,其專業(yè)標(biāo)準(zhǔn)的主要檢驗項目有:
①底座工作臺面的平面度。
②工作臺面的平面度(搖臂鉆無此項)。
③工作臺跳動(搖臂鉆無此項)。
④主軸錐孔軸線的徑向跳動。
⑤主軸回轉(zhuǎn)軸線的徑向跳動。
⑥主軸回轉(zhuǎn)軸線對底座工作面垂直度。
⑦主軸套筒垂直移動對底座工作面垂直度。
⑧主軸在主軸軸向力作用下主軸軸線對工作臺面垂直度的變化。
此外,搖臂鉆床還應(yīng)檢驗:
①搖臂轉(zhuǎn)動對底座工作面平行度。
②夾緊立柱和主軸箱時主軸軸線的位移量。精度檢驗時必須參照J(rèn)B2670-82《金屬切削機床精度檢驗通則》進行。
二. 精密設(shè)計的元素
在精密儀器和機床的很多部分,要經(jīng)過反復(fù)的祥和作用來達(dá)到最后的精度。由于誤差會產(chǎn)生幾何學(xué)、運動學(xué)和動力學(xué)的影響,每一個部分都會影響到整體的精度。盡管實行了這些影響因素的相互作用在整個系統(tǒng)活動中有重要作用,但這里主要是分離的介紹這些因素。
整篇論文的術(shù)語:儀器和機器都用來表示一種儀器。度量衡學(xué)的術(shù)語根據(jù)“國際大眾度量衡學(xué)術(shù)語詞匯表”定義的。在精密設(shè)計中,相對于純粹的度量衡學(xué)、精密定位和機床刀具路徑,有關(guān)機器和儀器的更是關(guān)鍵信息。因此,下列給出的定義,是從上面提到的國際詞匯表的擴大。
.加工精度:加工的實際數(shù)量等級的理想等級之間的差別,描述了質(zhì)量上的精度。
.加工誤差:與加工結(jié)果相聯(lián)系的參數(shù),描述可以合理的歸因于數(shù)量的等級的離中趨勢。
.精度:可以從只是裝置中讀出的指示度數(shù)的最小刻度。
.(加工結(jié)果的)重復(fù)性:在相同條件下成功加工相同量的結(jié)果間的差值。
.重現(xiàn)性:在不同條件下加工結(jié)果間的差別。
其他關(guān)于測量和制造機器的定義在[]和[]中分別給出,ISO準(zhǔn)則中給出了定量的描述。在布賴恩有關(guān)于“軸的旋度”的個別指導(dǎo)中描述了從20年代30年代末到現(xiàn)在的實際精密汽車轉(zhuǎn)向節(jié)和周的檢驗?zāi)J絒Bryan,1996]。
1.幾何圖
在最初的機器和儀器設(shè)計中,幾何圖是設(shè)計者對于及其所應(yīng)具有的結(jié)構(gòu)的意向。在最初階段,幾何圖通常包括一些基本形狀。例如,用圓柱體或管子表示軸,用梁或者封閉的盒子結(jié)構(gòu)標(biāo)志支撐物,用平面或柱狀表示導(dǎo)向部分。但是,在實際中,這些理想的形狀不能被復(fù)制,由于受機床精度限制,直線永遠(yuǎn)不可能完全直,而且元也不可能完全圓。這里,仔細(xì)選擇加工工序是應(yīng)特別注意提高零件的精度。在加工過程中,越多運動的軸將導(dǎo)致更多的錯誤,盡管額外的軸的微小運動可能會對幾何誤差有一定的補償。
精度不僅僅受肉眼的形狀誤差影響,也受肉眼偏差影響,例如表面光潔度。在整體加工中,這是很多應(yīng)用中的必須因素。在接觸關(guān)系中,磨對于表面光潔度的影響是明顯的。夾住的部分間的聯(lián)系對表面光潔度的影響就不太明顯,但是當(dāng)剛度、阻尼、磁滯和熱傳導(dǎo)率和熱擴散型等性質(zhì)相關(guān)時就是必需的了。幾何圖不僅在加工過程中修改,如果沒有足夠的隔離(例如隔振、隔熱),幾何圖就會受環(huán)境影響,例如,大部分材料的元件,在溫度變化影響下的膨脹和變形,對于未加封的的自然花崗巖,它結(jié)構(gòu)的形狀取決于水汽的進入。其他一些影響幾何圖的因素有:振動、電器和磁場。很多材料的使用壽命取決于空間的變化。
同樣介紹了非理想的形狀,因為實際上機器時有很多零部件裝配而成的。這里,對形式和力的接近的解釋和單塊結(jié)構(gòu)和用螺釘或膠合的裝配結(jié)構(gòu)間的選擇的考慮是必要的。在裝配時,零部件可以用非常精確的特殊機床加工[],盡管在接觸面的滯后作用可以會對整個在現(xiàn)性產(chǎn)生消極影響。在傳統(tǒng)形式中,對于閉環(huán)裝配部件要有窄的公差,否則會產(chǎn)生反接力,在錯誤測量情況下,就會在裝配時引入搞得不明確的壓力。力的封閉結(jié)構(gòu)從另一方面解決了這個問題,它采用靜態(tài)聯(lián)系方法,例如運動學(xué)的、半運動學(xué)的[]或者未運動學(xué)的[]設(shè)計聯(lián)系,因此,大大減小了幾何形狀誤差,甚至在力封閉結(jié)構(gòu)中,一些幾何誤差,例如:導(dǎo)向軸方形誤差和平面誤差將會影響整個精度。但是這些誤差都是可以減小的,而且有可能采用軟件補償來減少。
由于機器的機械結(jié)構(gòu)的剛度有限,所以幾何位置在有載荷的情況下就會發(fā)生變化。特別是黨在和產(chǎn)生的位置和尺寸的變化時,將嚴(yán)重的影響機器的工作。當(dāng)有了正確的模型,這些誤差都可以預(yù)測和彌補[]。
另一個關(guān)系到幾何圖的問題是:工件的定位。對于加工和測量機床,工件的定位必須保證在夾具內(nèi)不產(chǎn)生變形。同時,工件必須牢固的固定在機床的框架或工作臺上,而且,特別提到的是:在加工時,工件的熱膨脹不能產(chǎn)生過大的壓力。關(guān)系到定位問題的是:在高精密儀器重要是應(yīng)傳感器的襯墊物。這就是運動的和半運動的設(shè)計重點。
2. 運動學(xué)
機床往往不是靜止的,用運動學(xué)關(guān)系來描述就是:不同的部分有不同的運動。這些結(jié)構(gòu)和機構(gòu)的數(shù)學(xué)描述之描繪了理論發(fā)生什么,只基于理論長度、理論位置和理論圓弧的。但是,在實際中,這些因素都是在一定精度下保證的,因此,在實際的形式、速度和加速度等細(xì)節(jié)方面與理想的形式有所不同。
在現(xiàn)代機床中,位置是由多個機械部分聯(lián)合產(chǎn)生的,例如,侍服控制系統(tǒng)中的促動器和傳感器。促動器的公路和速度、傳感器分析、控制方法和機械重現(xiàn)性等因素共同決定了規(guī)定方法的精度。在多于一根軸被控制的情況下,軸的同步性是影響精度的另一因素。例如,在銑圓弧外形時,要同時控制兩個正交軸。
3. 動力學(xué)
事實上,機床不是靜止的,包含有多個加速部分,意味著在加工過程中動力學(xué)效應(yīng)將起到重要的作用。一個將相對位置不確定的加速度影響減到最小的方法是選擇合適的輪廓,例如,在第二引出物中不包含突漲的曲率,例如,用傾斜的正弦來代替拋物線。防止振動和錯誤運動同樣可以有效的減少動力位置誤差。零部件本身就可以按最小受力設(shè)計。若零部件是旋轉(zhuǎn)的,對稱結(jié)構(gòu)就有利于減少不平衡,同時全部的慣性的都可以減小,直線運動時,應(yīng)保持質(zhì)量小,并且應(yīng)盡可能靠近軸驅(qū)動。
另外一個決定機床對動力影響的因素是剛度。一般為了減小受力、增大剛度,不僅跟材料的質(zhì)量和種類有關(guān),而且和分布也有關(guān)系。通常動力障礙有外部產(chǎn)生,例如地板和聲音的振動。這些情況下,剛度、質(zhì)量比對于減小輸入相應(yīng)是必需的。是機床和障礙隔離可以直接減小輸入
4. 熱循環(huán)
熱循環(huán)的定義是:“在溫度變化時,一條經(jīng)過決定具體部件間相對位置的機械部件集合的路徑,原則上,熱循環(huán)應(yīng)盡量減小,以減小空間熱斜率的影響。機床熱循環(huán)中的熱膨脹又通過兩種方法:改變機床零件的有效長度或選擇合適的熱膨脹系數(shù)。定位的點和軸,可通過建立熱中心來選擇,如圖3.5所示。盡管熱膨脹系數(shù)在0.5×10-6oC內(nèi)才可測得[Breyor,1991],但熱膨脹的影響可通過測量不同溫度下零件的膨脹程度[Kunzmann,1988]和選擇合適的定位點建立相等的熱長度來減小。
為了獲得在空氣調(diào)節(jié)裝置大廳中0.5/day和在隨氣候變化的小屋中0.1/day的熱穩(wěn)定性還是個問題[Breyor,1991]。熱源被限于機床內(nèi)部或外部會導(dǎo)致機床溫度外形的變化。由于相同的機床元件有不同的熱時間,這可能會導(dǎo)致在熱循環(huán)中的不等熱膨脹(見5.5部分)。因此,Donaldson強烈推薦,并在它的關(guān)于機床刀具[Donaldson,1980]的出版物中作為一個原理。就是:在熱源處把熱量帶走。Wetzels曾利用一個整體熱源來檢驗一個人機床穩(wěn)定性問題。移開熱源之后,利用一條規(guī)則可以減小熱趨勢。
5.結(jié)構(gòu)鏈
根據(jù)[ANSI,1992],結(jié)構(gòu)鏈定義為:“機械零件的裝配,以保持指明的部件間的相對位置,一對典型的指明的部件是刀具和工件:結(jié)構(gòu)鏈包括主軸、軸承和軸套、導(dǎo)軌和機架、發(fā)動機和刀具、夾具?!睆陌l(fā)動機到響應(yīng)點的傳動路徑中全部機械零件和連接處,例如,最尾受動器(切削刀具或探針)或重力中心,必須具有高剛度以避免在改變載荷情況下的變形。機床或儀器的設(shè)計包括一個或多個結(jié)構(gòu)鏈。
在一個認(rèn)為是好的結(jié)構(gòu)鏈設(shè)計中必須的是連續(xù)和平行路徑的分離。在連續(xù)路徑上,剛度不能突然變化。連續(xù)路徑的改進方法是:通過把材料從最穩(wěn)定的部分轉(zhuǎn)移,從使最柔性的部分剛度增加。平行路徑的改進方法則相反:改進剛度最大的部分——為了系統(tǒng)質(zhì)量相等——到更柔性的平行路徑。
由于物理限制,一個封閉鏈系統(tǒng)的測量系統(tǒng)不可避免的在離最尾受動器一定距離處攝制。除了友好的結(jié)構(gòu)鏈設(shè)計外,測量系統(tǒng)和最尾受動器間的路徑必須盡可能是剛度大,以減小偏差,例如,減小路徑長度,叫做“測量歡”[Kunzmann,1996]。
7.動力補償
通過把正確的機械設(shè)計和閉環(huán)控制結(jié)合起來,可實現(xiàn)增大運動速度、精度和運動適應(yīng)性。典型的例子有:壓縮光盤播放器,高級CNC銑床和車床和快速零件裝配機床。隨著伺服定位控制裝置的發(fā)展,判斷傳動裝置是如何傳遞力的,以抵消慣性引起的力,例如刀具或者測量力、摩擦力等。如“十一條原理”[McKeown,1986,1987,1997]中闡述的,動力應(yīng)該安裝在直接驅(qū)動軸的位置。如果不行,由軸引起的偏差——叫做動力補償——包括機床導(dǎo)軌的動差。如果發(fā)動機和測量軸在旋轉(zhuǎn)中心的同一側(cè),那么,導(dǎo)軌在它的可控性下合成旋轉(zhuǎn)的影響會減小。
8.靜態(tài)分析
機床和儀器的結(jié)構(gòu)鏈能被類似的靜態(tài)力所影響,例如,改變慢速移動的機床部件的重量,輕微的改變切削力[Spaan,1995]和又鋼絲繩空氣管和真空管引起的力。加速度理由更高的頻率,將在下一段中討論。
由于機床元件的剛度有限,例如軸承、主軸、箱體、包括齒輪齒條和聯(lián)結(jié),上述提到的力將會引起刀具和探針的位置誤差。第一種方法,用以簡單線性彈性理論或Hertzian聯(lián)系理論為基礎(chǔ)的方法計算剛度可以輕易的估計偏差。如今,可利用高級軟件包如Unigraphics,I-DEAS,Algor,Pro-Engineer[FEM,1998]對復(fù)雜平面結(jié)構(gòu)、軸承、支承和單一材料和復(fù)合材料的3D實體進行線性和非線性分析(見5.1部分)。該領(lǐng)域一種有趣的方法在[Reinhart,1997]中有報道,他描述了在設(shè)計階段早期進行綜合FEM分析的3D-CAD,叫做:“實體樣板”。
9.動態(tài)分析
由于機床結(jié)構(gòu)一般是由許多不同的零件裝配而成的,可以被視為質(zhì)量合理的復(fù)合體,所以整個結(jié)構(gòu)須根據(jù)這些元件間的相互作用而行動。[Timoshenko,1974]。關(guān)于這個項目出版了很多好的書,如[RaO,1990].
由于大部分驅(qū)動系統(tǒng)都在質(zhì)量中心上做直線運動,慣性將會引起機床部件的旋轉(zhuǎn),主要是由于齒輪系統(tǒng)和聯(lián)結(jié)的剛度有限。在高精機床中,例如3D-CMMs,即使是低的加速度也會給測量精度帶來很大的影響。
機床的動力將會給系統(tǒng)工作帶來很大影響,位置精度和跟蹤精度會因為結(jié)構(gòu)中的機械階躍響應(yīng)而被大大減小。再加上到規(guī)和主軸慣性作用引起的輕微的加速度,振動狀態(tài)取決于固有頻率和阻尼大?。ㄒ?.1.2節(jié))。
為了預(yù)知內(nèi)部振動引起的偏差,對機床動力的建模分析是非常重要的,例如找出最低的固有頻率和在一定的頻率范圍內(nèi)機床結(jié)構(gòu)的振動模型(由伺服系統(tǒng)的帶寬限制)。重量輕的(動)剛度設(shè)計對于決定機床元件最低自然頻率和靜剛度是非常重要的。
機床結(jié)構(gòu)中的傳動裝置的相互作用力將會引起不能允許的偏差,特別是對高精度機床入晶片步進器和非旋轉(zhuǎn)對稱零件制造應(yīng)用的快速刀具伺服系統(tǒng)的SPDT機床。由于機架的質(zhì)量有限,和地面的聯(lián)結(jié)剛度有限,反作用力就會引起共振(見3.7部分)[Weck,1995b], [Weck,1997],[Renkens,1997],[Rankers,1997]。圖4.3簡單說明了上述因素的影響。
對于復(fù)雜系統(tǒng)如切削機床和晶片步進器,對整個機床進行建模和評估會使效率很低而耗時大。因此[Rankers,1997]建議將整個系統(tǒng)按基礎(chǔ)和元件成功的分割,分別對他們建模和分析。隨后將這些模型合成一個整體系統(tǒng)模型,用于整個機床的固有頻率和振動模型的外形分析。
動力模型,例如塊狀質(zhì)量模型,對于分析選中的想法的動力行為是很有幫助的。這個模型包括由一系列機械條件所聯(lián)結(jié)起來的很多質(zhì)量,可以用一套差分方程表示。模型還原技術(shù)[Hoek,1992-1980],[Ewins,1984],[Rankers,1997]。為該目的,可應(yīng)用4.3節(jié)中的靜態(tài)模型確定固有頻率和質(zhì)量,質(zhì)量慣性和重心位置。應(yīng)用于SPOT機床中的陶瓷導(dǎo)軌結(jié)構(gòu),在圖4.4中描述了模型形狀分析的結(jié)果。[Vermeulen,1996a]。