(福建專(zhuān)版)2019高考數(shù)學(xué)一輪復(fù)習(xí) 6.3 等比數(shù)列及其前n項(xiàng)和課件 文.ppt
《(福建專(zhuān)版)2019高考數(shù)學(xué)一輪復(fù)習(xí) 6.3 等比數(shù)列及其前n項(xiàng)和課件 文.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《(福建專(zhuān)版)2019高考數(shù)學(xué)一輪復(fù)習(xí) 6.3 等比數(shù)列及其前n項(xiàng)和課件 文.ppt(27頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
6.3等比數(shù)列及其前n項(xiàng)和,知識(shí)梳理,考點(diǎn)自測(cè),1.等比數(shù)列的定義一般地,如果一個(gè)數(shù)列從起,每一項(xiàng)與它的前一項(xiàng)的比等于常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的,公比通常用字母q(q≠0)表示.2.等比數(shù)列的通項(xiàng)公式設(shè)等比數(shù)列{an}的首項(xiàng)為a1,公比為q,則它的通項(xiàng)an=.3.等比中項(xiàng)如果成等比數(shù)列,那么G叫做a與b的等比中項(xiàng),即G是a與b的等比中項(xiàng)?a,G,b成等比數(shù)列?.4.等比數(shù)列的前n項(xiàng)和公式等比數(shù)列{an}的公比為q(q≠0),其前n項(xiàng)和為Sn,當(dāng)q=1時(shí),Sn=na1;,第二項(xiàng),同一個(gè),公比,a1qn-1,a,G,b,G2=ab,知識(shí)梳理,考點(diǎn)自測(cè),知識(shí)梳理,考點(diǎn)自測(cè),1.判斷下列結(jié)論是否正確,正確的畫(huà)“√”,錯(cuò)誤的畫(huà)“”.(1)滿(mǎn)足an+1=qan(n∈N*,q為常數(shù))的數(shù)列{an}為等比數(shù)列.()(2)G為a,b的等比中項(xiàng)?G2=ab.()(3)等比數(shù)列中不存在數(shù)值為0的項(xiàng).()(4)如果{an}為等比數(shù)列,bn=a2n-1+a2n,那么數(shù)列{bn}也是等比數(shù)列.()(5)如果數(shù)列{an}為等比數(shù)列,那么數(shù)列{lnan}是等差數(shù)列.()(6)若數(shù)列{an}的通項(xiàng)公式是an=an,則其前n項(xiàng)和為(),,,√,,,,知識(shí)梳理,考點(diǎn)自測(cè),2.已知數(shù)列{an}中,a1=3,an+1-3an=0,bn=log3an,則數(shù)列{bn}的通項(xiàng)公式bn=()A.3n+1B.3nC.nD.n-13.已知{an}為等差數(shù)列,公差為1,且a5是a3與a11的等比中項(xiàng),Sn是{an}的前n項(xiàng)和,則S12的值為()A.21B.42C.63D.54,C,解析:由an+1-3an=0,得an+1=3an,又a1=3,∴數(shù)列{an}是以3為首項(xiàng),以3為公比的等比數(shù)列,則an=3n,∴bn=log3an=n.故選C.,D,知識(shí)梳理,考點(diǎn)自測(cè),4.(2017全國(guó)Ⅱ)我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈()A.1盞B.3盞C.5盞D.9盞,B,解析:設(shè)塔的頂層共有x盞燈,則各層的燈數(shù)構(gòu)成一個(gè)公比為2的等比數(shù)列,由,可得x=3,故選B.,5.(2017北京朝陽(yáng)二模)等比數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=2,a4=-2,則{an}的通項(xiàng)公式an=.,2(-1)n-1,解析:∵a1=2,a4=-2,則a4=-2=a1q3,∴q3=-1,q=-1,即an=2(-1)n-1.,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)四,等比數(shù)列的基本運(yùn)算例1(1)設(shè){an}是由正數(shù)組成的等比數(shù)列,Sn為其前n項(xiàng)和.已知a2a4=1,S3=7,則S5等于(),(2)(2017陜西咸陽(yáng)二模)在等比數(shù)列{an}中,已知a3,a7是方程x2-6x+1=0的兩根,則a5=()A.1B.-1C.1D.3(3)(2017全國(guó)Ⅲ)設(shè)等比數(shù)列{an}滿(mǎn)足a1+a2=-1,a1-a3=-3,則a4=.,B,A,-8,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)四,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)四,思考解決等比數(shù)列基本運(yùn)算問(wèn)題的常見(jiàn)思想方法有哪些?解題心得解決等比數(shù)列有關(guān)問(wèn)題的常見(jiàn)思想方法:(1)方程思想:等比數(shù)列中有五個(gè)量a1,n,q,an,Sn,一般可以“知三求二”,通過(guò)列方程(組)求關(guān)鍵量a1和q,問(wèn)題可迎刃而解.(2)分類(lèi)討論思想:因?yàn)榈缺葦?shù)列的前n項(xiàng)和公式涉及對(duì)公比q的分類(lèi)討論,所以當(dāng)某一參數(shù)為公比進(jìn)行求和時(shí),就要對(duì)參數(shù)是否為1進(jìn)行分類(lèi)求和.(3)整體思想:應(yīng)用等比數(shù)列前n項(xiàng)和公式時(shí),常把qn或當(dāng)成整體進(jìn)行求解.,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)四,對(duì)點(diǎn)訓(xùn)練1(1)(2017山西太原二模,文4)已知公比q≠1的等比數(shù)列{an}前n項(xiàng)和Sn,a1=1,S3=3a3,則S5=(),(2)(2017安徽安慶二模)在等比數(shù)列{an}中,a3-3a2=2,且5a4為12a3和2a5的等差中項(xiàng),則{an}的公比等于()A.3B.2或3C.2D.6,D,C,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)四,等比數(shù)列的判定與證明例2已知數(shù)列{an}的前n項(xiàng)和Sn=1+λan,其中λ≠0.(1)證明{an}是等比數(shù)列,并求其通項(xiàng)公式;(2)若,求λ.,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)四,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)四,思考判斷或證明一個(gè)數(shù)列是等比數(shù)列有哪些方法?解題心得1.證明數(shù)列{an}是等比數(shù)列常用的方法:,(3)通項(xiàng)公式法,若數(shù)列通項(xiàng)公式可寫(xiě)成an=cqn-1(c,q均是不為0的常數(shù),n∈N*),則{an}是等比數(shù)列.2.若判斷一個(gè)數(shù)列不是等比數(shù)列,則只要證明存在連續(xù)三項(xiàng)不成等比數(shù)列即可.,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)四,對(duì)點(diǎn)訓(xùn)練2(2017吉林市模擬)已知數(shù)列{an}中,a1=1,anan+1=,記T2n為{an}的前2n項(xiàng)的和,bn=a2n+a2n-1,n∈N*.(1)判斷數(shù)列{bn}是否為等比數(shù)列,并求出bn;(2)求T2n.,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)四,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)四,等比數(shù)列性質(zhì)的應(yīng)用(多考向)考向1等比數(shù)列項(xiàng)的性質(zhì)的應(yīng)用,B,A,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)四,思考經(jīng)常用等比數(shù)列的哪些性質(zhì)簡(jiǎn)化解題過(guò)程?,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)四,考向2等比數(shù)列前n項(xiàng)和的性質(zhì)的應(yīng)用例4(1)設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn.若S2=3,S4=15,則S6=()A.31B.32C.63D.64(2)在公比為正數(shù)的等比數(shù)列{an}中,a1+a2=2,a3+a4=8,則S8等于()A.21B.42C.135D.170,C,D,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)四,解析:(1)∵S2=3,S4=15,∴由等比數(shù)列前n項(xiàng)和的性質(zhì),得S2,S4-S2,S6-S4成等比數(shù)列,∴(S4-S2)2=S2(S6-S4),即(15-3)2=3(S6-15),解得S6=63,故選C.(2)解法一:S8=(a1+a2)+(a3+a4)+(a5+a6)+(a7+a8)=2+8+32+128=170.,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)四,思考本題應(yīng)用什么性質(zhì)求解比較簡(jiǎn)便?解題心得1.在解答等比數(shù)列的有關(guān)問(wèn)題時(shí),為簡(jiǎn)化解題過(guò)程常常利用等比數(shù)列項(xiàng)的如下性質(zhì):(1)通項(xiàng)公式的推廣:an=amqn-m;(2)等比中項(xiàng)的推廣與變形:=aman(m+n=2p)及akal=aman(k+l=m+n).2.對(duì)已知條件為等比數(shù)列的前幾項(xiàng)和,求其前多少項(xiàng)和的問(wèn)題,應(yīng)用公比不為-1的等比數(shù)列前n項(xiàng)和的性質(zhì):Sn,S2n-Sn,S3n-S2n仍成等比數(shù)列比較簡(jiǎn)便.,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)四,對(duì)點(diǎn)訓(xùn)練3(1)(2017廣東廣州綜合測(cè)試)已知數(shù)列{an}為等比數(shù)列,若a4+a6=10,則a7(a1+2a3)+a3a9=()A.10B.20C.100D.200(2)(2017江西宜春二模)各項(xiàng)均為正數(shù)的等比數(shù)列{an}的前n項(xiàng)和為Sn,若S4=10,S12=130,則S8=()A.-30B.40C.40或-30D.40或-50,C,B,=(a4+a6)2=102=100.(2)由等比數(shù)列的性質(zhì),知S4,S8-S4,S12-S8成等比數(shù)列,則(S8-10)2=10(130-S8),整理可得(S8+30)(S8-40)=0,故S8=40.,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)四,等差數(shù)列與等比數(shù)列的綜合問(wèn)題例5(2017全國(guó)Ⅱ,文17)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的前n項(xiàng)和為T(mén)n,a1=-1,b1=1,a2+b2=2.(1)若a3+b3=5,求{bn}的通項(xiàng)公式;(2)若T3=21,求S3.,解設(shè){an}的公差為d,{bn}的公比為q,則an=-1+(n-1)d,bn=qn-1.由a2+b2=2得d+q=3.①(1)由a3+b3=5,得2d+q2=6.②,因此{(lán)bn}的通項(xiàng)公式為bn=2n-1.(2)由b1=1,T3=21得q2+q-20=0,解得q=-5或q=4.當(dāng)q=-5時(shí),由①得d=8,則S3=21.當(dāng)q=4時(shí),由①得d=-1,則S3=-6.,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)四,思考解決等差數(shù)列、等比數(shù)列的綜合問(wèn)題的基本思路是怎樣的?解題心得等差數(shù)列和等比數(shù)列的綜合問(wèn)題,涉及的知識(shí)面很寬,題目的變化也很多,但是萬(wàn)變不離其宗,只要抓住基本量a1,d(q)充分運(yùn)用方程、函數(shù)、轉(zhuǎn)化等數(shù)學(xué)思想方法,合理調(diào)用相關(guān)知識(shí),就不難解決這類(lèi)問(wèn)題.,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)四,對(duì)點(diǎn)訓(xùn)練4(2017湖南邵陽(yáng)一模,文17)在等差數(shù)列{an}中,a2=1,a5=4.(1)求數(shù)列{an}的通項(xiàng)公式an;(2)設(shè),求數(shù)列{bn}的前n項(xiàng)和Sn.,解(1)由題意知,a5-a2=3d=3,∴d=1,∴an=n-1(n∈N*).(2)由(1)得bn=2n-1,∴數(shù)列{bn}是以1為首項(xiàng),公比為2的等比數(shù)列,,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)四,1.等比數(shù)列基本量的運(yùn)算是等比數(shù)列中的一類(lèi)基本問(wèn)題,數(shù)列中有五個(gè)量a1,n,q,an,Sn,一般可以“知三求二”,通過(guò)列方程(組)便可迎刃而解.2.判定等比數(shù)列的方法(1)定義法:(q是不為零的常數(shù),n∈N*)?{an}是等比數(shù)列.(2)通項(xiàng)公式法:an=cqn-1(c,q均是不為零的常數(shù),n∈N*)?{an}是等比數(shù)列.(3)等比中項(xiàng)法:=anan+2(anan+1an+2≠0,n∈N*)?{an}是等比數(shù)列.3.求解等比數(shù)列問(wèn)題常用的數(shù)學(xué)思想(1)方程思想:如求等比數(shù)列中的基本量;(2)分類(lèi)討論思想:如求和時(shí)要分q=1和q≠1兩種情況討論,判斷單調(diào)性時(shí)對(duì)a1與q分類(lèi)討論.,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)四,1.在等比數(shù)列中,易忽視每一項(xiàng)與公比都不為0.2.在求等比數(shù)列的前n項(xiàng)和時(shí),易忽略q=1這一特殊情形.,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 福建專(zhuān)版2019高考數(shù)學(xué)一輪復(fù)習(xí) 6.3 等比數(shù)列及其前n項(xiàng)和課件 福建 專(zhuān)版 2019 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 等比數(shù)列 及其 課件
鏈接地址:http://zhongcaozhi.com.cn/p-3309059.html