高一數學(人教A版)必修2能力強化提升:2-2-3 直線與平面平行的性質
《高一數學(人教A版)必修2能力強化提升:2-2-3 直線與平面平行的性質》由會員分享,可在線閱讀,更多相關《高一數學(人教A版)必修2能力強化提升:2-2-3 直線與平面平行的性質(10頁珍藏版)》請在裝配圖網上搜索。
一、選擇題 1.(2012-2013邯鄲一中月考試題)梯形ABCD中,AB∥CD,AB?平面α,CD?平面α,則直線CD與平面α內的直線的位置關系只能是( ) A.平行 B.平行或異面 C.平行或相交 D.異面或相交 [答案] B 2.已知直線a、b、c及平面α,下列哪個條件能確定a∥b( ) A.a∥α,b∥α B.a⊥c,b⊥c C.a、b與c成等角 D.a∥c,b∥c [答案] D 3.正方體ABCD-A1B1C1D1中,截面BA1C1與直線AC的位置關系是( ) A.AC∥截面BA1C1 B.AC與截面BA1C1相交 C.AC在截面BA1C1內 D.以上答案都錯誤 [答案] A [解析] ∵AC∥A1C1,又∵AC?面BA1C1,∴AC∥面BA1C1. 4.如圖所示的三棱柱ABC-A1B1C1中,過A1B1的平面與平面ABC交于直線DE,則DE與AB的位置關系是( ) A.異面 B.平行 C.相交 D.以上均有可能 [答案] B [解析] ∵A1B1∥AB,AB?平面ABC,A1B1?平面ABC, ∴A1B1∥平面ABC. 又A1B1?平面A1B1ED,平面A1B1ED∩平面ABC=DE,∴DE∥A1B1. 又AB∥A1B1,∴DE∥AB. 5.直線a∥平面α,α內有n條直線交于一點,則這n條直線中與直線a平行的直線( ) A.至少有一條 B.至多有一條 C.有且只有一條 D.沒有 [答案] B [解析] 設這n條直線的交點為P,則點P不在直線a上,那么直線a和點P確定一個平面β,則點P既在平面α內又在平面β內,則平面α與平面β相交.設交線為直線b,則直線b過點P.又直線a∥平面α,a?平面β,則a∥b.很明顯這樣作出的直線b有且只有一條,那么直線b可能在這n條直線中,也可能不在,即這n條直線中與直線a平行的直線至多有一條. 6.如圖所示,在空間四邊形ABCD中,E,F,G,H分別是AB,BC,CD,DA上的點,EH∥FG,則EH與BD的位置關系是( ) A.平行 B.相交 C.異面 D.不確定 [答案] A [解析] ∵EH∥FG,FG?平面BCD,EH?平面BCD, ∴EH∥平面BCD. ∵EH?平面ABD,平面ABD∩平面BCD=BD, ∴EH∥BD. 7.一平面截空間四邊形的四邊得到四個交點,如果該空間四邊形只有一條對角線與這個截面平行,那么這四個交點圍成的四邊形是( ) A.梯形 B.菱形 C.平行四邊形 D.任意四邊形 [答案] A [解析] 由性質定理得截面四邊形有一組對邊平行. 8.已知正方體AC1的棱長為1,點P是面AA1D1D的中心,點Q是面A1B1C1D1的對角線B1D1上一點,且PQ∥平面AA1B1B,則線段PQ的長為( ) A.1 B. C. D. [答案] C [解析] 由PQ∥平面AA1BB知PQ∥AB1,又P為AO1的中點,∴PQ=AB1=. 二、填空題 9.若夾在兩個平面間的三條平行線段相等,那么這兩個平面的位置關系是________. [答案] 平行或相交 10.如圖所示,平面α過正方體ABCD-A1B1C1D1的三個頂點B,D,A1,且α與底面A1B1C1D1的交線為l,則l與B1D1的位置關系是________. [答案] 平行 [解析] ∵DD1∥BB1,DD1=BB1, ∴四邊形BDD1B1是平行四邊形. ∴BD∥B1D1. 又B1D1?平面A1B1C1D1,BD?平面A1B1C1D1, ∴BD∥平面A1B1C1D1. 又BD?α,α∩平面A1B1C1D1=l, ∴l(xiāng)∥BD.∴l(xiāng)∥B1D1. 11.如圖所示,AB∥α,CD∥α,AC,BD分別交α于M,N兩點,=2,則=________. [答案] 2 [解析] 如圖,連接AD交平面α于E點,連接ME和NE. ∵平面ACD∩α=ME,CD∥α,CD?平面ACD, ∴CD∥ME.∴=. 同理,=, ∴=. ∴=2. 12.如下圖,ABCD是空間四邊形,E、F、G、H分別是其四邊上的點且共面,AC∥平面EFGH,AC=m,BD=n,當EFGH是菱形時,=________. [答案] [解析]?。剑剑剑鳨F=FG. ∴EF=,∴==. 三、解答題 13.如圖所示,已知平面α∩β=b,平面β∩γ=a,平面α∩γ=c,a∥α. 求證:b∥c. [分析] 要證b∥c,只需證明b∥a和c∥a,已知條件中有線面平行,于是可以將線面平行轉化為線線平行. [證明] ∵a∥α,β是過a的平面,α∩β=b, ∴a∥b.同理可得a∥c. ∴b∥c. 14.在三棱錐P-ABC中,O是AB的中點,在棱PA上求一點M,使得OM∥面PBC. [解析] 取PA中點M,連接OM. 在△PAB中,由于O、M分別為AB、AP中點, 所以OM∥PB,又OM?面PBC, 所以OM∥面PBC. 15.如圖,已知A,B,C,D四點不共面,且AB∥平面α,CD∥平面α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G.求證:EFHG是一個平行四邊形. [證明] ∵AB∥α,平面ABC∩α=EG,AB?平面ABC,∴EG∥AB. 同理,FH∥AB,∴EG∥FH. 同理,EF∥GH. ∴四邊形EFHG是一個平行四邊形. 16.如圖,在長方體ABCD-A1B1C1D1中,E、H分別是棱A1B1、D1C1上的點,且EH∥A1D1,過EH的平面與棱BB1,CC1相交,交點分別為F、G. 求證:FG∥平面ADD1A1. [證明] ∵EH∥A1D1,又A1D1∥B1C1, ∴EH∥B1C1, ∴EH∥平面BCC1B1. 又平面EHGF∩平面BCC1B1=FG, ∴EH∥FG,∴FG∥A1D1. 又FG?平面ADD1A,A1D1?平面ADD1A1, ∴FG∥平面ADD1A1.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 高一數學人教A版必修2能力強化提升:2-2-3 直線與平面平行的性質 數學 人教 必修 能力 強化 提升 直線 平面 平行 性質
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://zhongcaozhi.com.cn/p-1375192.html