購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
XX 大 學
畢 業(yè) 設 計( 論 文 )
題目
一種全自動臥式雷管卡口機設計
作者
學院
機電工程學院
專業(yè)
機械設計制造及其自動化
學號
指導教師
年 月 日
摘 要
目前,國內(nèi)大部分雷管生產(chǎn)企業(yè)仍采用手工裝配操作,在裝配過程中,操作工需一手拿基礎(chǔ)雷管管體,另一手拿引火元件,先后放入裝配設備中進行裝配,此時,因引火元件與吸附在雷管內(nèi)壁的起爆藥發(fā)生摩擦,使卡口工序成為工業(yè)雷管生產(chǎn)當中事故發(fā)生概率相當高的一道工序。
一直以來,國內(nèi)缺少一種合理、有效的解決方案,安全隱患問題困擾著多數(shù)雷管生產(chǎn)企業(yè)。根據(jù)國家工信部《關(guān)于民用爆炸物品行業(yè)技術(shù)進步的指導意見》及《關(guān)于加強工業(yè)雷管安全生產(chǎn)基礎(chǔ)條件建設的指導意見》精神,國家鼓勵支持采用自動卡口機來替代手工操作,本設計就上述問題提出一種通過PLC控制程序,控制氣缸運動的全自動臥式工業(yè)雷管自動卡口機設計方案,替代手工裝配作業(yè)來避免裝配過程中危險品直接與人員接觸從而消除安全隱患,降低工人的勞動強度,提高工作效率。
關(guān)鍵詞:雷管,氣動,可編程序控制器(PLC),機械手。
II
ABSTRACT
At present, the domestic most of detonator production enterprises still use manual assembly operations, in the process of assembly, the operator should be based the detonator tube body in one hand, on the other hand flash components, successively into the assembly equipment for assembly, at this time, because of the fire element and adsorption on the inner wall of the detonator initiation explosive friction, make bayonet process of industrial detonator production accident happened a process with the probability is quite high.
For a long time, the domestic lack of a reasonable and effective solutions, security problem bothering most of detonator production enterprise. According to the national ministry of "about civil explosives industry technology progress guidance" and "on strengthening the industrial detonator production safety guidance for the construction of basic condition" spirit, the state shall encourage support a bayonet machine to replace manual operation, this design is a through the PLC control program for the above problems, the control cylinder movement of automatic horizontal industrial detonator automatic monitoring machine design scheme, replace the manual assembly operations to avoid direct contact with the staff of dangerous goods in the assembly process to eliminate the safety hidden trouble, reduce the labor intensity, improve work efficiency.
Keywords:detonator,air pressure drive, PLC,manipulator.
III
目 錄
第一章 緒 論............................................1
1.1 機械人簡介..........................................................................................................................1
1.1.1 機器人的發(fā)展及應用.......................................................................................................1
1.1.2機器人的組成.....................................................................................................................4
1.2 機械手的概述及組成..........................................................................................................6
1.3本設計的主要工作................................................................................................................8
第二章 卡口機的系統(tǒng)概述與系統(tǒng)硬件設計.....................................9
2.1 系統(tǒng)概述............................................................................................................................9
2.2 系統(tǒng)硬件設計....................................................................................................................9
2.2.1傳動系統(tǒng)設計..................................................................................................................9
2.2.2控制系統(tǒng)的設計..............................................................................................................11
第三章 自動卡口機的總體結(jié)構(gòu).............................14
3.1卡口機的組成與工作流程.................................................................................................14
3.2設計具體采用方案.............................................................................................................14
第4章 傳動方式的選擇..................................17
4.1液壓傳動的優(yōu)缺.................................................................................................................17
4.2氣壓傳動的優(yōu)缺點.............................................................................................................17
第5章 機械手的設計方案.............................19
5.1機械手的座標型式與自由度....................................................................................................19
5.2機械手的手部結(jié)構(gòu)方案設計....................................................................................................20
5.3 機械手的手腕結(jié)構(gòu)方案設計..................................................................................................20
5.4 機械手的手臂結(jié)構(gòu)方案設計..................................................................................................20
5.5 機械手的驅(qū)動方案設計..........................................................................................................20
5.6 機械手的控制方案設計..........................................................................................................21
5.7機械手的主要參數(shù)....................................................................................................................21
5.8機械手的技術(shù)參數(shù)列表............................................................................................................21
第六章 手部結(jié)構(gòu)設計.................................24
6.1.1手指的形狀和分類....................................................24
6.1.2設計時考慮的幾個問題................................................24
6.1.3手部夾緊氣缸的設計..................................................25
III
6.2氣流負壓式吸盤........................................................29
第七章 手腕結(jié)構(gòu)設計.....................................32
7.1手腕的自由度..........................................................32
7.2 手腕的驅(qū)動力矩的計算.................................................32
7.2.1手腕轉(zhuǎn)動時所愉的驅(qū)動力矩............................................32
7.2.2回轉(zhuǎn)氣缸的驅(qū)動力矩計算..............................................35
第八章 手臂結(jié)構(gòu)設計.....................................37
8.1手臂伸縮與手腕回轉(zhuǎn)部分................................................37
8.1.1結(jié)構(gòu)設計............................................................37
8.1.2手臂伸縮驅(qū)動力的計算................................................38
8.2手臂升降和回轉(zhuǎn)部分....................................................39
8.2.1結(jié)構(gòu)設計............................................................39
8.3手臂伸縮氣缸的設計....................................................40
第九章 結(jié)論.............................................44
致謝.....................................................45
參考文獻.................................................46
說明書附圖...............................................48
IV
XX大學本科生畢業(yè)設計
第1章 緒 論
1.1 機器人簡介
工業(yè)機器人(英語:industrial robot。簡稱IR)是廣泛適用的能夠自主動作,且多軸聯(lián)動的機械設備。它們在必要情況下配備有傳感器,其動作步驟包括靈活的,轉(zhuǎn)動都是可編程控制的(即在工作過程中,無需任何外力的干預)。它們通常配備有機械手、刀具或其他可裝配的的加工工具,以及能夠執(zhí)行搬運操作與加工制造的任務。機器人是靠自身動力和控制能力來實現(xiàn)各種功能的一種機器。聯(lián)合國標準化組織采納了美國機器人協(xié)會給機器人下的定義:“一種可編程和多功能的,用來搬運材料、零件、工具的操作機;或是為了執(zhí)行不同的任務而具有可改變和可編程動作的專門系統(tǒng)[1]?!?
工業(yè)機器人在經(jīng)歷了長期發(fā)展后,已經(jīng)成為制造業(yè)中不可缺少的核心設備。同時隨著社會的發(fā)展和人們生活水平的提高,各種各樣的機器人也被開發(fā)出來去適應制造領(lǐng)域意外的各個行業(yè)。這些機器人作為機器人家族的后起之秀,由于其用途廣泛而大有后來居上之勢,仿形機器人、農(nóng)業(yè)機器人、服務機器人、水下機器人、醫(yī)療機器人、軍用機器人、娛樂機器人等各種用途的特種機器人紛紛面世,而且正以飛快的速度向?qū)嵱没~進。
工業(yè)機器人由操作機(機械本體)、控制器、伺服驅(qū)動系統(tǒng)和檢測傳感裝置構(gòu)成,是一種仿人操作、自動控制、可重復編程、能在三維空間完成各種作業(yè)的機電一體化自動化生產(chǎn)設備。特別適合于多品種、變批量的柔性生產(chǎn)。它對穩(wěn)定、提高產(chǎn)品質(zhì)量,提高生產(chǎn)效率,改善勞動條件和產(chǎn)品的快速更新?lián)Q代起著十分重要的作用。
機器人并不是在簡單意義上代替人工的勞動,而是綜合了人的特長和機器特長的一種擬人的電子機械裝置,既有人對環(huán)境狀態(tài)的快速反應和分析判斷能力,又有機器可長時間持續(xù)工作、精確度高、抗惡劣環(huán)境的能力,從某種意義上說它也是機器的進化過程產(chǎn)物,它是工業(yè)以及非產(chǎn)業(yè)界的重要生產(chǎn)和服務性設備,也是先進制造技術(shù)領(lǐng)域不可缺少的自動化設備。
1.1.1 機器人的發(fā)展及應用
1920年 捷克斯洛伐克作家卡雷爾·恰佩克在他的科幻小說《羅薩姆的機器人萬能公司》中,根據(jù)Robota(捷克文,原意為“勞役、苦工”)和Robotnik(波蘭文,原意為“工人”),創(chuàng)造出“機器人”這個詞。
1939年 美國紐約世博會上展出了西屋電氣公司制造的家用機器人Elektro。它由電纜控制,可以行走,會說77個字,甚至可以抽煙,不過離真正干家務活還差得遠。但它讓人們對家用機器人的憧憬變得更加具體。
1942年 美國科幻巨匠阿西莫夫提出“機器人三定律”。雖然這只是科幻小說里的創(chuàng)造,但后來成為學術(shù)界默認的研發(fā)原則。
1954年 美國人喬治·德沃爾制造出世界上第一臺可編程的機器人,并注冊了專利。這種機械手能按照不同的程序從事不同的工作,因此具有通用性和靈活性。
1956年 在達特茅斯會議上,馬文·明斯基提出了他對智能機器的看法:智能機器“能夠創(chuàng)建周圍環(huán)境的抽象模型,如果遇到問題,能夠從抽象模型中尋找解決方法”。這個定義影響到以后30年智能機器人的研究方向。
1959年 德沃爾與美國發(fā)明家約瑟夫·英格伯格聯(lián)手制造出第一臺工業(yè)機器人。隨后,成立了世界上第一家機器人制造工廠——Unimation公司。由于英格伯格對工業(yè)機器人的研發(fā)和宣傳,他也被稱為“工業(yè)機器人之父”。
1962年—1963年 傳感器的應用提高了機器人的可操作性。人們試著在機器人上安裝各種各樣的傳感器,包括1961年恩斯特采用的觸覺傳感器,托莫維奇和博尼1962年在世界上最早的“靈巧手”上用到了壓力傳感器,而麥卡錫1963年則開始在機器人中加入視覺傳感系統(tǒng),并在1965年,幫助MIT推出了世界上第一個帶有視覺傳感器,能識別并定位積木的機器人系統(tǒng)。
1965年 約翰·霍普金斯大學應用物理實驗室研制出Beast機器人。Beast已經(jīng)能通過聲納系統(tǒng)、光電管等裝置,根據(jù)環(huán)境校正自己的位置。20世紀60年代中期開始,美國麻省理工學院、斯坦福大學、英國愛丁堡大學等陸續(xù)成立了機器人實驗室。美國興起研究第二代帶傳感器、“有感覺”的機器人,并向人工智能進發(fā)。
1968年 美國斯坦福研究所公布他們研發(fā)成功的機器人Shakey。它帶有視覺傳感器,能根據(jù)人的指令發(fā)現(xiàn)并抓取積木,不過控制它的計算機有一個房間那么大。Shakey可以算是世界第一臺智能機器人,拉開了第三代機器人研發(fā)的序幕。
1973年 世界上第一次機器人和小型計算機攜手合作,就誕生了美國Cincinnati Milacron公司的機器人T3。
1978年 美國Unimation公司推出通用工業(yè)機器人PUMA,這標志著工業(yè)機器人技術(shù)已經(jīng)完全成熟。PUMA至今仍然工作在工廠第一線。
1984年 英格伯格再推機器人Helpmate,這種機器人能在醫(yī)院里為病人送飯、送藥、送郵件。同年,他還預言:“我要讓機器人擦地板,做飯,出去幫我洗車,檢查安全”。
1999年 日本索尼公司推出犬型機器人愛寶(AIBO),當即銷售一空,從此娛樂機器人成為目前機器人邁進普通家庭的途徑之一。
2002年 丹麥iRobot公司推出了吸塵器機器人Roomba,它能避開障礙,自動設計行進路線,還能在電量不足時,自動駛向充電座。Roomba是目前世界上銷量最大、最商業(yè)化的家用機器人。
2006年 6月,微軟公司推出Microsoft Robotics Studio,機器人模塊化、平臺統(tǒng)一化的趨勢越來越明顯,比爾·蓋茨預言,家用機器人很快將席卷全球。
機器人的未來發(fā)展將很快,應用范圍更大,如設計工業(yè)、農(nóng)業(yè)、運輸、醫(yī)藥、科學研究等各個方面。
總的趨勢是提高工作精度和運動速度,增加機構(gòu)的自由度以提高通用性和靈活性。降低結(jié)構(gòu)自重,逐步采用標準化的模塊式組合結(jié)構(gòu),開發(fā)傳感器技術(shù)和機器人語言,同時根據(jù)內(nèi)部信息和環(huán)境信息來控制機器人,采用計算機仿真技術(shù)以及實現(xiàn)機器人的智能化。工業(yè)機器人的發(fā)展正從各個方面顯露出它的強大勢頭。從近幾年來國際工業(yè)機器人會議上綜合的情況來看,工業(yè)機器人發(fā)展的重點是具有智能的高級機器人以及低成本、穩(wěn)定可靠的用于自動化生產(chǎn)的機器人。
空間探索、能源問題和人工智能是當代科學技術(shù)三大課題。人工智能主要內(nèi)容之一就是關(guān)于智能機器人的研究。感受外界信息,理解和記憶信息,規(guī)劃行動,人機對話,是智能機器人發(fā)展的四個主要問題。在空間探索領(lǐng)域中,機器人技術(shù)具有美好的發(fā)展前景和廣泛的應用價值,空間自動加工工廠;開發(fā)宇宙空間的高級自治系統(tǒng);在空間裝配的自重復系統(tǒng)等。
本世紀以來,人類開始有計劃地開發(fā)海洋,開發(fā)食物、能源和物質(zhì)來源。機器人是現(xiàn)代科學技術(shù)發(fā)展成果之一。人們常常把新出現(xiàn)的技術(shù)用來制造機器人,再將機器人應用到新技術(shù)領(lǐng)域中去。為適應時代發(fā)展的需要,人們把大部分智能技術(shù)結(jié)合起來,使之向更高級的機器人——智能機器人發(fā)展,這已成為機器人的一個發(fā)展方向。
相對于人來說,工業(yè)機器人的工作準確性高,工作速度高,負載能力大,耐久力強,重復性好,所以工業(yè)機器人獲得了廣泛應用,顯示了很好的效能。
從目前情況看,工業(yè)機器人的研究、制造和使用者都希望能更加擴大其應用范圍,例如:由計算機控制的具有適應性控制的裝配用機器人、焊接機器人、實現(xiàn)連續(xù)軌跡控制的機器人、清理鑄件的機器人,建筑用機器人,地下工作機器人,消防用機器人,城市垃圾處理機器人,看護病人的機器入,協(xié)助料理殘廢人生活的機器人,海洋開發(fā)機器人,空間開發(fā)機器人等。
目前,智能機器人已從基礎(chǔ)研究發(fā)展為應用研究,今后逐漸推廣應用。具有感覺和識別功能(特別是視覺)的機器人已經(jīng)用于自動檢修和裝配作業(yè)。能在極限作業(yè)環(huán)境中工作的極限作業(yè)機器人等等都在加緊研究開發(fā)之中。
a. 手部機構(gòu)的多功能化:日前的工業(yè)機器人的手大部分只有兩個手指,相當于一種夾持器的功能。機器人的手將逐漸發(fā)展為多關(guān)節(jié)、多手指并具有人工觸覺的人造手。
b. 采用并行處理的復合控制:由于微電子技術(shù)的發(fā)展,微型計算機的性能大幅提高,從而可以利用多個微處理器對各種感覺(如視覺、觸覺等)信息進行并行處理,并控制機器人多功能的手快速地完成更復雜的工作。
c. 步行機的研究,它能使機器人的車輛方式發(fā)展為多關(guān)節(jié)的步行方式。隨著生物工程的迅速發(fā)展,人類步行控制和動物步行機理的研究更為深入,引用這些機理將使步行機性能顯著提高。
d. 識別功能的提高:從識別物體(或零件)的位置和形狀發(fā)展為識別物體的姿態(tài)和顏色,并達到實用,使機器人能夠快速地識別更復雜的物體。
1.1.2 機器人的組成
機器人是典型的機電一體化產(chǎn)品,一般由機械本體、控制系統(tǒng)、傳感器、和驅(qū)動器等四部分組成。機械本體是機器人實施作業(yè)的執(zhí)行機構(gòu)。為對本體進行精確控制,傳感器應提供機器人本體或其所處環(huán)境的信息,控制系統(tǒng)依據(jù)控制程序產(chǎn)生指令信號,通過控制各關(guān)節(jié)運動坐標的驅(qū)動器,使各臂桿端點按照要求的軌跡、速度和加速度,以一定的姿態(tài)達到空間指定的位置。驅(qū)動器將控制系統(tǒng)輸出的信號變換成大功率的信號,以驅(qū)動執(zhí)行器工作[4]。
a. 機械本體
機械本體,是機器人賴以完成作業(yè)任務的執(zhí)行機構(gòu),一般是一臺機械手,也稱操作器、或操作手,可以在確定的環(huán)境中執(zhí)行控制系統(tǒng)指定的操作。典型工業(yè)機器人的機械本體一般由手部(末端執(zhí)行器)、腕部、臂部、腰部和基座構(gòu)成。機械手多采用關(guān)節(jié)式機械結(jié)構(gòu),一般具有6個自由度,其中3個用來確定末端執(zhí)行器的位置,另外3個則用來確定末端執(zhí)行裝置的方向(姿勢)。機械臂上的末端執(zhí)行裝置可以根據(jù)操作需要換成焊槍、吸盤、扳手等作業(yè)工具。
b. 控制系統(tǒng)
控制系統(tǒng)是機器人的指揮中樞,相當于人的大腦功能,負責對作業(yè)指令信息、內(nèi)外環(huán)境信息進行處理,并依據(jù)預定的本體模型、環(huán)境模型和控制程序做出決策,產(chǎn)生相應的控制信號,通過驅(qū)動器驅(qū)動執(zhí)行機構(gòu)的各個關(guān)節(jié)按所需的順序、沿確定的位置或軌跡運動,完成特定的作業(yè)。從控制系統(tǒng)的構(gòu)成看,有開環(huán)控制系統(tǒng)和閉環(huán)控制系統(tǒng)之分;從控制方式看有程序控制系統(tǒng)、適應性控制系統(tǒng)和智能控制系統(tǒng)之分。
c. 驅(qū)動器
驅(qū)動器是機器人的動力系統(tǒng),相當于人的心血管系統(tǒng),一般由驅(qū)動裝置和傳動機構(gòu)兩部分組成。因驅(qū)動方式的不同,驅(qū)動裝置可以分成電動、液動和氣動三種類型。驅(qū)動裝置中的電動機、液壓缸、氣缸可以與操作機直接相連,也可以通過傳動機構(gòu)與執(zhí)行機構(gòu)相連。傳動機構(gòu)通常有齒輪傳動、鏈傳動、諧波齒輪傳動、螺旋傳動、帶傳動等幾種類型。
d. 傳感器
傳感器是機器人的感測系統(tǒng),相當于人的感覺器官,是機器人系統(tǒng)的重要組成部分,包括內(nèi)部傳感器和外部傳感器兩大類。內(nèi)部傳感器主要用來檢測機器人本身的狀態(tài),為機器人的運動控制提供必要的本體狀態(tài)信息,如位置傳感器、速度傳感器等。外部傳感器則用來感知機器人所處的工作環(huán)境或工作狀況信息,又可分成環(huán)境傳感器和末端執(zhí)行器傳感器兩種類型;前者用于識別物體和檢測物體與機器人的距離等信息,后者安裝在末端執(zhí)行器上,檢測處理精巧作業(yè)的感覺信息。常見的外部傳感器有力覺傳感器、觸覺傳感器、接近覺傳感器、視覺傳感器等[5]。
工業(yè)機器人由操作機(機械本體)、控制器、伺服驅(qū)動系統(tǒng)和檢測傳感裝置構(gòu)成,是一種仿人操作,自動控制、可重復編程、能在三維空間完成各種作業(yè)的機電一體化自動化生產(chǎn)設備。特別適合于多品種、變批量的柔性生產(chǎn)。它對穩(wěn)定、提高產(chǎn)品質(zhì)量,提高生產(chǎn)效率,改善勞動條件和產(chǎn)品的快速更新?lián)Q代起著十分重要的作用。
機器人技術(shù)是綜合了計算機、控制論、機構(gòu)學、信息和傳感技術(shù)、人工智能、仿生學等多學科而形成的高新技術(shù),是當代研究十分活躍,應用日益廣泛的領(lǐng)域。機器人應用情況,是一個國家工業(yè)自動化水平的重要標志。
機器人并不是在簡單意義上代替人工的勞動,而是綜合了人的特長和機器特長的一種擬人的電子機械裝置,既有人對環(huán)境狀態(tài)的快速反應和分析判斷能力,又有機器可長時間持續(xù)工作、精確度高、抗惡劣環(huán)境的能力,從某種意義上說它也是機器的進化過程產(chǎn)物,它是工業(yè)以及非產(chǎn)業(yè)界的重要生產(chǎn)和服務性設各,也是先進制造技術(shù)領(lǐng)域不可缺少的自動化設備[6]。
機械手是模仿著人手的部分動作,按給定程序、軌跡和要求實現(xiàn)自動抓取、搬運或操作的自動機械裝置。在工業(yè)生產(chǎn)中應用的機械手被稱為“工業(yè)機械手”。生產(chǎn)中應用機械手可以提高生產(chǎn)的自動化水平和勞動生產(chǎn)率:可以減輕勞動強度、保證產(chǎn)品質(zhì)量、實現(xiàn)安全生產(chǎn);尤其在高溫、高壓、低溫、低壓、粉塵、易爆、有毒氣體和放射性等惡劣的環(huán)境中,它代替人進行正常的工作,意義更為重大。因此,在機械加工、沖壓、鑄、鍛、焊接、熱處理、電鍍、噴漆、裝配以及輕工業(yè)、交通運輸業(yè)等方面得到越來越廣泛的引用[7]。
機械手的結(jié)構(gòu)形式開始比較簡單,專用性較強,僅為某臺機床的上下料裝置,是附屬于該機床的專用機械手。隨著工業(yè)技術(shù)的發(fā)展,制成了能夠獨立的按程序控制實現(xiàn)重復操作,適用范圍比較廣的“程序控制通用機械手”,簡稱通用機械手。由于通用機械手能很快的改變工作程序,適應性較強,所以它在不斷變換生產(chǎn)品種的中小批量生產(chǎn)中獲得廣泛的引用[8]。
60噸沖床自動上料裝置是在一般沖床上改裝沖床曲軸,添加上料機械手,升料臺和滑道等裝置,是沖床自動連續(xù)工作。該裝置的特點是由上料機械手來控制沖床動作,能保證沖床有節(jié)奏的,安全的生產(chǎn)[9]。
1.2機械手概述與組成
機械手主要由執(zhí)行機構(gòu)、驅(qū)動系統(tǒng)、控制系統(tǒng)以及位置檢測裝置等所組成。各系統(tǒng)相互之間的關(guān)系如方框圖1-1所示。
控制系統(tǒng)
驅(qū)動系統(tǒng)
被抓取工件
執(zhí)行機構(gòu)
位置檢測裝置
圖1.1 機械手的組成方框圖
a. 執(zhí)行機構(gòu)
包括手部、手腕、手臂和立柱等部件。
(1) 手部
即與物件接觸的部件。由于與物件接觸的形式不同,可分為夾持式和吸附式手部。夾持式手部由手指(或手爪) 和傳力機構(gòu)所構(gòu)成。手指是與物件直接接觸的構(gòu)件,常用的手指運動形式有回轉(zhuǎn)型和平移型。回轉(zhuǎn)型手指結(jié)構(gòu)簡單,制造容易,故應用較廣泛;平移型應用較少,其原因是結(jié)構(gòu)比較復雜,但平移型手指夾持圓形零件時,工件直徑變化不影響其軸心的位置,因此適宜夾持直徑變化范圍大的工件。
手指結(jié)構(gòu)取決于被抓取物件的表面形狀、被抓部位(是外廓或是內(nèi)孔)和物件的重量及尺寸。常用的指形有平面的、V形面的和曲面的:手指有外夾式和內(nèi)撐式;指數(shù)有雙指式、多指式和雙手雙指式等。
而傳力機構(gòu)則通過手指產(chǎn)生夾緊力來完成夾放物件的任務。傳力機構(gòu)型式較常用的有:滑槽杠桿式、連桿杠桿式、斜面杠桿式、齒輪齒條式、絲杠螺母式,式彈簧式和重力式等。
附式手部主要由吸盤等構(gòu)成,它是靠吸附力(如吸盤內(nèi)形成負壓或產(chǎn)生電吸磁力)吸附物件,相應的吸附式手部有負壓吸盤和電磁盤兩類。
對于輕小片狀零件、光滑薄板材料等,通常用負壓吸盤吸料。造成負壓的方式有氣流負壓式和真空泵式。
對于導磁性的環(huán)類和帶孔的盤類零件,以及有網(wǎng)孔狀的板料等,通常用電磁吸盤吸料。電磁吸盤的吸力由直流電磁鐵和交流電磁鐵產(chǎn)生。
用負壓吸盤和電磁吸盤吸料,其吸盤的形狀、數(shù)量、吸附力大小,根據(jù)被吸附的物件形狀、尺寸和重量大小而定。
此外,根據(jù)特殊需要,手部還有勺式(如澆鑄機械手的澆包部分)、托式(如冷齒輪機床上下料機械手的手部)等型式[10]。
(2) 手腕
是連接手部和臂部的部件,并可用來調(diào)節(jié)被抓物體的方位,以擴大機械手的動作范圍,并使機械手變得更靈巧,適應性更強。手腕有獨立的自由度。有回轉(zhuǎn)運動、上下擺動、左右擺動.一般腕部設有回轉(zhuǎn)運動在增加一個上下擺動即可滿足要求,有些動作較為簡單的專用機械手,為了簡化結(jié)構(gòu),可以不設腕部,而直接用臂部運動驅(qū)動手部搬運工件。目前,應用最為廣泛的手腕回轉(zhuǎn)運動機構(gòu)為回轉(zhuǎn)液壓缸,它的結(jié)構(gòu)緊湊,靈巧但回轉(zhuǎn)角度小,并且要求嚴格密封,否則就難保證穩(wěn)定的輸出扭矩。因此在要求較大回轉(zhuǎn)角的情況,采用齒條傳動或鏈輪以及輪系結(jié)構(gòu)[11]。
(3) 手臂
手臂是支承被抓物件、手部、手腕的重要部件。手臂的作用是帶動手指去抓取物件,并按預定要求將其搬運到指定的位置。工業(yè)機械手的手臂通常由驅(qū)動手臂運動的部件(如油缸、氣缸、齒輪齒條機構(gòu)、連桿機構(gòu)、螺旋機構(gòu)和凸輪機構(gòu)等)與驅(qū)動源(如液壓、氣壓或電機等)相配合,以實現(xiàn)手臂的各種運動。
手臂在進行伸縮或升降運動時,為了防止繞其軸線的轉(zhuǎn)動,都需要有導向裝置,以保證手指按正確方向運動。此外,導向裝置還能承擔手臂所受的彎曲力矩和扭轉(zhuǎn)力矩以及手臂回轉(zhuǎn)運動時在啟動、制動瞬間產(chǎn)生的慣性力矩,使運動部件受力狀態(tài)簡單。
導向裝置結(jié)構(gòu)形式,常用的有:單圓柱、雙圓柱、四圓柱和V形槽、燕尾槽等導向型式[12]。
(4) 立柱
立柱是支承手臂的部件,立柱也可以是手臂的一部分,手臂的回轉(zhuǎn)運動和升降(或俯仰)運動均與立柱有密切的聯(lián)系。機械手的立柱通常為固定不動的,但因工作需要,有時也可作橫向移動,即稱為可移式立柱[13]。
(5) 行走機構(gòu)
當工業(yè)機械手需要完成較遠距離的操作,或擴大使用范圍時,可在機座上安裝滾輪、軌道等行走機構(gòu),以實現(xiàn)工業(yè)機械手的整機運動。滾輪式行走機構(gòu)可分為有軌的和無軌的兩種。驅(qū)動滾輪運動則應另外增設機械傳動裝置[14]。
(6) 機座
機座是機械手的基礎(chǔ)部分,機械手執(zhí)行機構(gòu)的各部件和驅(qū)動系統(tǒng)均安裝于機座上,故起支撐和連接的作用[15]。
b. 驅(qū)動系統(tǒng)
驅(qū)動系統(tǒng)是驅(qū)動工業(yè)機械手執(zhí)行機構(gòu)運動的動力裝置,通常由動力源、控制調(diào)節(jié)裝置和輔助裝置組成。常用的驅(qū)動系統(tǒng)有液壓傳動、氣壓傳動、電力傳動和機械傳動等四種形式[16]。
c. 控制系統(tǒng)
控制系統(tǒng)是支配著工業(yè)機械手按規(guī)定的要求運動的系統(tǒng)。目前工業(yè)機械手的控制系統(tǒng)一般由程序控制系統(tǒng)和電氣定位(或機械擋塊定位)系統(tǒng)組成??刂葡到y(tǒng)有電氣控制和射流控制兩種,它支配著機械手按規(guī)定的程序運動,并記憶人們給予機械手的指令信息(如動作順序、運動軌跡、運動速度及時間),同時按其控制系統(tǒng)的信息對執(zhí)行機構(gòu)發(fā)出指令,必要時可對機械手的動作進行監(jiān)視,當動作有錯誤或發(fā)生故障時即發(fā)出報警信號[17]。
d. 位置檢測裝置
控制機械手執(zhí)行機構(gòu)的運動位置,并隨時將執(zhí)行機構(gòu)的實際位置反饋給控制系統(tǒng),并與設定的位置進行比較,然后通過控制系統(tǒng)進行調(diào)整,從而使執(zhí)行機構(gòu)以一定的精度達到設定位置[18]。
1.3 本設計主要設計工作
本設計首先確定了卡口機的總體布局,然后提出了各個部分的具體設計方案,根據(jù)方案,主要的設計和研究內(nèi)容有:
1. 用于基礎(chǔ)雷管氣動上下料機械手的設計。
2. 連桿、安裝支架、藥頭模具等重要零件的設計。
第2章 卡口機的系統(tǒng)概述與系統(tǒng)硬件設計
2.1 系統(tǒng)概述
該設計系統(tǒng)采用氣動機械手,氣壓驅(qū)動具有防火、防爆、節(jié)能、高效、無污染的特點,氣動機械手具有結(jié)構(gòu)簡單和制造成本低等優(yōu)點, 并可以根據(jù)各種自動化設備的工作需要, 按照設定的程序工作。因此其尤其適用于民用爆炸品生產(chǎn)的自動生產(chǎn)設備和生產(chǎn)線上。鑒于群發(fā)卡口機的故障率較高,運行不穩(wěn)定的缺陷,故該系統(tǒng)采用PLC 控制,氣壓驅(qū)動,配合高速抓取裝置的單發(fā)連續(xù)卡口的機械手設計方案。
2.2 系統(tǒng)硬件設計
2.2.1 傳動系統(tǒng)設計
通常在工業(yè)自動化領(lǐng)域中,物體的抓放系統(tǒng)需兩個驅(qū)動器來分別完成Y 軸和Z 軸方向上的二自由度運動(見圖1)。在實際作業(yè)當中,為了提高工效,抓放時間盡可能的短,就要求驅(qū)動器能夠盡可能快的運動。于是驅(qū)動器兩端都需要設置終端緩沖裝置(兩個驅(qū)動器需設置四個緩沖裝置,圖中四個圓點為緩沖裝置),以減少運動過程在終端位置時由于撞擊帶來的振動,從而保持運動軌跡光滑。由此造成整個抓放運動的時間較長。
如圖2 所示,該自動卡口采用高速抓放裝置,高速抓放裝置由一個旋轉(zhuǎn)氣缸驅(qū)動,凸輪輪廓曲線是一條等寬的凹槽,從動件的滾子置于凹槽內(nèi)以保持從動件與凸輪在運動過程中的接觸。旋轉(zhuǎn)氣缸帶動擺桿轉(zhuǎn)動,擺桿再驅(qū)動滾子在凸輪槽里作往復運動,從而來完成Y 軸和Z 軸方向上的二自由度運動。由于只設置一個旋轉(zhuǎn)氣缸驅(qū)動單元,所以只需在兩個終點上分別設置一個緩沖器即可,從而極大的縮短了運動時間,因此相對于目前市場上由雙驅(qū)動器組成的抓取單元來說,工作效率提高了20 %以上,因此本設計中的氣動機械手也采用該高速抓放裝置。
如圖3 所示,該自動卡口分為上層抓取裝置和下層抓取裝置。上層抓取基礎(chǔ)雷管至等待位,抓取裝置由1 個旋轉(zhuǎn)氣缸驅(qū)動;下層抓取引火元件至卡口位和抓取成品雷管至轉(zhuǎn)載模,2 個抓取動作可同時進行,在引火元件轉(zhuǎn)載模、卡口位、成品轉(zhuǎn)載模3 個工作位,進行物料抓取和傳送,同樣的下層抓取裝置也由1 個旋轉(zhuǎn)氣缸驅(qū)動,它采用平行四連桿機構(gòu),可使下層兩個抓取機構(gòu)的動作保持一致。下層抓取裝置安裝在伸縮氣缸作用端上,當伸縮氣缸伸出時下層抓取機構(gòu)才可進行作業(yè),當伸縮氣缸縮回時,等待位擋板隨之打開,在等待位的基礎(chǔ)雷管順著滑道落入卡口位,這時伸縮氣缸伸出,下層抓取裝置再進行抓取作業(yè),如此循環(huán)。為避免誤動作,在下層抓取裝置的旋轉(zhuǎn)氣缸設置中位停止,只有旋轉(zhuǎn)氣缸保持中位,伸縮氣缸才動作,卡口動作依然采用目前多數(shù)所采用的杠桿式卡口原理進行卡口。
2.2.2 控制系統(tǒng)設計
本設計的氣動卡口機當中的氣動機械手是一種具有2 自由度的柱面坐標機械手,各氣缸的往復運動由各自的電磁閥控制。各氣缸的氣動輸入、輸出端各設置一個節(jié)流調(diào)速閥,以控制各個氣缸動作速度。
需要強調(diào)的是,要實現(xiàn)中位停止功能,高速抓取裝置中的旋轉(zhuǎn)氣缸必須由一個三位五通閥(中封式)來控制。原因是在旋轉(zhuǎn)氣缸至中點時,傳感器感應后,電磁閥兩端線圈均失電,此時閥芯處于中位,因此只有采用中封式電磁閥才能夠保持旋轉(zhuǎn)氣缸此時靜止不動作。詳見圖4 所示的氣動系統(tǒng)原理圖。
在氣缸的兩端各設置一個磁性接近開關(guān)作為PLC 的輸入信號,以輸入信號作為氣缸動作的條件,在卡口位增設一光電傳感開關(guān)信號以保證卡口動作的準確性。根據(jù)輸入點數(shù)和輸出點數(shù),采用具有24 點輸入單元和24 點輸出單元的三菱FX2N-48MR 作為控制核心,其I/O 端口與傳感器和電磁閥線圈連接,PLC 的接線圖如圖5 所示,I/O 分配表如表1 所示。
第3章 自動卡口機的總體結(jié)構(gòu)
3.1 卡口機的組成與工作流程
此卡口機特征在于它由10個獨立卡口單元和步進模具傳送裝置組成;它包括卡口動作氣缸、安裝支架、連桿、藥頭模具、送藥頭氣缸、固定座、傳殼氣缸、管殼盛放盒、送殼氣缸、管殼頂出氣缸、推殼氣缸、擋模氣缸、軸承、管殼導向槽、往復座、前擋板、后擋板、連桿轉(zhuǎn)軸固定塊、管殼頂出氣缸導軌、通孔芯軸、彈簧夾頭、步進氣缸、藥頭模具導軌和擋模氣缸固定板組成;通過PLC的控制程序來控制氣缸運動,完成送殼、傳殼、送藥頭、卡口、頂出管殼、傳送藥頭模具一系列動作,協(xié)調(diào)各個氣缸之間的動作,從而順利實現(xiàn)雷管卡口。
首先送殼氣缸的活塞桿外伸,將管殼從管殼盛放盒側(cè)壁的小孔中頂出,送入到傳殼氣缸的管殼夾頭孔中,傳殼氣缸回縮,將管殼送至管殼導向槽中,推殼氣缸活塞桿外伸,推動管殼頂出氣缸,利用管殼頂出氣缸上的頂桿將管殼送至設定的卡口位置,同時送藥頭氣缸將排布在藥頭模具上的雷管藥頭送入雷管管殼中,卡口動作氣缸伸縮帶動連桿,驅(qū)動往復座運動徑向擠壓彈簧夾頭,將停留在彈簧夾頭中的雷管管殼與伸入管殼中一定距離的藥頭卡緊,完成雷管卡口。然后管殼頂出氣缸外伸,將已卡口的雷管頂出彈簧夾頭,送至藥頭模具中去,然后各氣缸回至初始位置,同時擋模氣缸外伸,卡住藥頭模具,通過步進氣缸帶動擋模氣缸定位,將藥頭模具傳送至下一個工位,然后各氣缸回至初始位置,完成一次卡口動作,實現(xiàn)往復循環(huán)卡口的過程。將藥頭模具設計成能夠?qū)崿F(xiàn)一模10發(fā)的卡口需求,保證了藥頭送入時與雷管管殼的同軸度。往復傳送裝置由步進氣缸和擋模氣缸及其配套滑軌組成,能夠?qū)崿F(xiàn)模具的傳送,形成流水線卡口作業(yè)。其工作流程圖見圖6。
3.2 設計具體采用方案
1、 是采用PLC程序控制,以電磁閥控制氣缸,壓縮空氣作為工作介質(zhì),通過壓縮空氣驅(qū)動氣缸活塞做往復運動來實現(xiàn)送殼、傳殼、送藥頭、卡口、頂出管殼、傳送藥頭模具等一系列動作;
2、 是使用氣缸的往復運動,來實現(xiàn)一系列的機械動作,代替?zhèn)鹘y(tǒng)的機械傳動裝置,簡化了結(jié)構(gòu),降低了維修和安裝難度??删S護性、經(jīng)濟性、都得到了很大提高。同時具有氣動控制動作迅速,反應快;維護簡單,工作介質(zhì)清潔等優(yōu)點。而且其工作環(huán)境適應性好,無論是在易燃、易爆、多塵埃、輻射、強磁、振動、沖擊等惡劣的環(huán)境中,氣壓傳動系統(tǒng)工作都安全可靠;
3、 是將傳統(tǒng)手動卡口設備的立式卡口技術(shù)方式改為臥式卡口技術(shù),更有利于機械自動化作業(yè),具有藥頭與管殼對接精準,卡口長度精確控制,藥頭模具能夠?qū)崿F(xiàn)一模10發(fā)的卡口需求,保證藥頭送入時與雷管管殼的同軸度,可適用于多種不同形狀不同外徑的雷管卡口作業(yè),方便進行生產(chǎn)線布置等優(yōu)點;四是通過巧妙設計的模具和步進傳送機構(gòu),實現(xiàn)了每個卡口工位按順序依次卡口,每次能完成一模10發(fā)雷管的卡口作業(yè),且能實現(xiàn)流水線生產(chǎn),全程都由PLC程序?qū)崿F(xiàn)自動控制,自動化及智能化程度高。
否
是
送殼氣缸頂出管殼
傳殼氣缸傳遞管殼
送模氣缸將管殼頂至卡口位
送藥頭氣缸送入藥頭
卡口
退模氣缸頂出已卡口雷管
傳送裝置傳送模具至下一工位
一模10發(fā)卡口完畢完畢
進入下一工序
第4章 傳動方式的選擇
4.1液壓傳動的優(yōu)缺點
液壓傳動的優(yōu)點:1、液壓傳動能較為方便的實現(xiàn)無極調(diào)速,調(diào)速范圍大;
2、 在相同功率的情況下,液壓傳動能量轉(zhuǎn)換機構(gòu)的體積小,重量較輕;
3、 液壓傳動工作平穩(wěn),換向沖擊力小,便于實現(xiàn)頻繁的換向;
4、 液壓傳動便于實現(xiàn)過載保護,而且液壓油能夠使傳動部位之間實現(xiàn)自潤滑,故使用壽命長;
5、 操作簡單,便于實現(xiàn)自動化。特別是和電氣控制配合使用時,易于實現(xiàn)較為復雜的自循環(huán)工作;
6、 液壓原件能較為方便的實現(xiàn)系列化、標準化和通用化。
因此現(xiàn)在的機械手大多采用液壓傳動,液壓傳動存在以下幾個缺點:
1、液壓傳動在工作過程中常有較多的能量損失(摩擦損失、泄露損失等);
2、液壓傳動易泄漏,不僅污染工作場地,限制其應用范圍,可能引起失火事故,而且影響執(zhí)行部分的運動平穩(wěn)性及正確性。
3、工作時受溫度變化影響較大。油溫變化時,液體粘度變化,引起運動特性變化。
4、因液壓脈動和液體中混入空氣,易產(chǎn)生噪聲。
5、為了減少泄漏,液壓元件的制造工藝水平要求較高,故價格較高;且使用維護需要較高技術(shù)水平。
4.2 氣壓傳動的優(yōu)缺點
氣壓傳動以壓縮氣體為工作介質(zhì),靠氣體的壓力傳遞動力或信息的流體傳動。傳遞動力的系統(tǒng)是將壓縮氣體經(jīng)由管道和控制閥輸送給氣動執(zhí)行元件,把壓縮氣體的壓力能轉(zhuǎn)換為機械能而作功;傳遞信息的系統(tǒng)是利用氣動邏輯元件或射流元件以實現(xiàn)邏輯運算等功能,亦稱氣動控制系統(tǒng)。
氣壓傳動的優(yōu)點:
1、介質(zhì)提取和處理方便。氣壓傳動工作壓力較低,工作介質(zhì)提取容易,而后排入大氣,處理方便,一般不需設置回收管道和容器:介質(zhì)清潔,管道不易堵塞,不存在介質(zhì)變質(zhì)及補充的問題.
2、阻力損失和泄漏較小,在壓縮空氣的輸送過程中,阻力損失較小(一般僅為油路的千分之一),空氣便于集中供應和遠距離輸送。外泄漏不會像液壓傳動那樣,造成壓力明顯降低和嚴重污染。
3、動作迅速,反應靈敏。氣動系統(tǒng)一般只需要0.02s-0.3s即可建立起所需的壓力和速度。氣動系統(tǒng)也能實現(xiàn)過載保護,便于自動控制。
4、能源可儲存。壓縮空氣可存貯在儲氣罐中,因此,發(fā)生突然斷電等情況時,機器及其工藝流程不致突然中斷。
5、工作環(huán)境適應性好。在易燃、易爆、多塵埃、強磁、強輻射、振動等惡劣環(huán)境中,氣壓傳動與控制系統(tǒng)比機械、電器及液壓系統(tǒng)優(yōu)越,而且不會因溫度變化影響傳動及控制性能。
6、成本低廉。由于氣動系統(tǒng)工作壓力較低,因此降低了氣動元、輔件的材質(zhì)和加工精度要求,制造容易,成本較低。
氣壓傳動的缺點:
1、 空氣可壓縮性大,載荷變化時,傳遞運動不夠平穩(wěn)、均勻;
2、 工作壓力不能過高,傳動效率低,不易獲得很大的力或力矩;
3、 有較大的排氣噪聲。
由于本設計是用于民用爆破雷管卡口機設計,基礎(chǔ)雷管重量小,易爆炸,要求工作效率高;氣動成本底,易于維修和環(huán)境清理。對比上述傳動優(yōu)缺點選擇氣壓傳動。
第五章 機械手的設計方案
對氣動機械手的基本要求是能快速、準確地拾一放和搬運物件,這就要求它
們具有高精度、快速反應、一定的承載能力、足夠的工作空間和靈活的自由度及
在任意位置都能自動定位等特性。設計氣動機械手的原則是:充分分析作業(yè)對象
(工件)的作業(yè)技術(shù)要求,擬定最合理的作業(yè)工序和工藝,并滿足系統(tǒng)功能要求
和環(huán)境條件;明確工件的結(jié)構(gòu)形狀和材料特性,定位精度要求,抓取、搬運時的
受力特性、尺寸和質(zhì)量參數(shù)等,從而進一步確定對機械手結(jié)構(gòu)及運行控制的要求;
盡量選用定型的標準組件,簡化設計制造過程,兼顧通用性和專用性,并能實現(xiàn)
柔性轉(zhuǎn)換和編程控制.
本次設計的機械手是通用氣動上下料機械手,是一種適合于成批或中、小批
生產(chǎn)的、可以改變動作程序的自動搬運或操作設備,動強度大和操作單調(diào)頻繁的生產(chǎn)場合。它可用于操作環(huán)境惡劣,勞動強度大和操作單調(diào)頻繁的生產(chǎn)場合。
5.1機械手的座標型式與自由度
按機械手手臂的不同運動形式及其組合情況,其座標型式可分為直角座標式、圓柱座標式、球座標式和關(guān)節(jié)式。由于本機械手在上下料時手臂具有升降、收縮及回轉(zhuǎn)運動,因此,采用圓柱座標型式。相應的機械手具有三個自由度,為了彌補升降運動行程較小的缺點,增加手臂擺動機構(gòu),從而增加一個手臂上下擺動的自由度。
下圖所示為機械手的手指、手腕、手臂的運動示意圖
機械手的運動示意圖
5.2機械手的手部結(jié)構(gòu)方案設計
為了是機械手的通用性更強,把機械手的手部結(jié)構(gòu)設計成可更換結(jié)構(gòu),當工件是棒料時,使用夾持式手部;當工件是板料時,使用氣流負壓式吸盤。
5.3 機械手的手腕結(jié)構(gòu)方案設計
考慮到機械手的通用性,同時由于被抓取工件是水平放置,因此手腕必須設有回轉(zhuǎn)運動才可滿足工作的要求。因此,手腕設計成回轉(zhuǎn)結(jié)構(gòu),實現(xiàn)手腕回轉(zhuǎn)運動的機構(gòu)為回轉(zhuǎn)氣缸。
5.4 機械手的手臂結(jié)構(gòu)方案設計
按照抓取工件的要求,本機械手的手臂有三個自由度,即手臂的伸縮、左右回轉(zhuǎn)和升降(或俯仰)運動。手臂的回轉(zhuǎn)和升降運動是通過立柱來實現(xiàn)的,立柱的橫向移動即為手臂的橫移。手臂的各種運動由氣缸來實現(xiàn)。
5.5 機械手的驅(qū)動方案設計
由于氣壓傳動系統(tǒng)的動作迅速,反應靈敏,阻力損失和泄漏較小,成本低廉因此本機械手采用氣壓傳動方式。
5.6 機械手的控制方案設計
考慮到機械手的通用性,同時使用點位控制,因此我們采用可編程序控制器 (PLC)對機械手進行控制。當機械手的動作流程改變時,只需改變PLC程序即可實現(xiàn),非常方便快捷。
5.7機械手的主要參數(shù)
1、主參數(shù)機械手的最大抓重是其規(guī)格的主參數(shù),目前機械手最大抓重以10公斤左右的為數(shù)最多。故該機械手主參數(shù)定為10公斤,高速動作時抓重減半。使用吸盤式手部時可吸附5公斤的重物。
2、基本參數(shù)運動速度是機械手主要的基本參數(shù)。操作節(jié)拍對機械手速度提出了要求,設計速度過低限制了它的使用范圍。而影響機械手動作快慢的主要因素是手臂伸縮及回轉(zhuǎn)的速度。
該機械手最大移動速度設計為1.2cm/s,最大回轉(zhuǎn)速度設計為1200°/s,平均移動速度為ldm/s,平均回轉(zhuǎn)速度為900°/s。
機械手動作時有啟動、停止過程的加、減速度存在,用速度一行程曲線來說明速度特性較為全面,因為平均速度與行程有關(guān),故用平均速度表示速度的快慢更為符合速度特性。
除了運動速度以外,手臂設計的基本參數(shù)還有伸縮行程和工作半徑。大部分機械手設計成相當于人工坐著或站著且略有走動操作的空間。過大的伸縮行程和工作半徑,必然帶來偏重力矩增大而剛性降低。在這種情況下宜采用自動傳送裝置為好。根據(jù)統(tǒng)計和比較,該機械手手臂的伸縮行程定為600mm,最大工作半徑約為1500mm,手臂安裝前后可調(diào)200mm。手臂回轉(zhuǎn)行程范圍定為2400(應大于180否則需安裝多只手臂),又由于該機械手設計成手臂安裝范圍可調(diào),從而擴大了它的使用范圍。手臂升降行程定為150mm。
定位精度也是基本參數(shù)之一。該機械手的定位精度為土0.5~±lmm。
5.8機械手的技術(shù)參數(shù)列表
設計技術(shù)參數(shù):
1、抓重
10斤 (夾持式手部)
5斤 ( 氣流負壓式吸盤)
2、自由度數(shù):
3個自由度
3、座標型式:
圓柱座標
4、最大工作半徑:
1500mm
5、手臂最大中心高:
1380mm
6、手臂運動參數(shù):
伸縮行程 600mm
伸縮速度 500mm/s
升降行程 200mm
升降速度 300mm/s
回轉(zhuǎn)范圍 0°~ 240°
回轉(zhuǎn)速度 90°
7、手腕運動參數(shù):
回轉(zhuǎn)范圍 0°~ 180