三角函數(shù)及解三角形知識(shí)點(diǎn)
《三角函數(shù)及解三角形知識(shí)點(diǎn)》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《三角函數(shù)及解三角形知識(shí)點(diǎn)(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
三角函數(shù)知識(shí)點(diǎn) 2、角的頂點(diǎn)與原點(diǎn)重合,角的始邊與軸的非負(fù)半軸重合,終邊落在第幾象限,則稱(chēng)為第幾象限角. 第一象限角的集合為 第二象限角的集合為 第三象限角的集合為 第四象限角的集合為 終邊在軸上的角的集合為 終邊在軸上的角的集合為 終邊在坐標(biāo)軸上的角的集合為 3、與角終邊相同的角的集合為 4、已知是第幾象限角,確定所在象限的方法:先把各象限均分等份,再?gòu)妮S的正半軸的上方起,依次將各區(qū)域標(biāo)上一、二、三、四,則原來(lái)是第幾象限對(duì)應(yīng)的標(biāo)號(hào)即為終邊所落在的區(qū)域. 5、長(zhǎng)度等于半徑長(zhǎng)的弧所對(duì)的圓心角叫做弧度. 6、半徑為的圓的圓心角所對(duì)弧的長(zhǎng)為,則角的弧度數(shù)的絕對(duì)值是. 7、弧度制與角度制的換算公式:,,. 8、若扇形的圓心角為,半徑為,弧長(zhǎng)為,周長(zhǎng)為,面積為,則,,. 9、設(shè)是一個(gè)任意大小的角,的終邊上任意一點(diǎn)的坐標(biāo)是,它與原點(diǎn)的距離是,則,,. 10、三角函數(shù)在各象限的符號(hào):第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正. Pv x y A O M T 11、三角函數(shù)線(xiàn):,,. 12、同角三角函數(shù)的基本關(guān)系: ; . 13、三角函數(shù)的誘導(dǎo)公式: ,,. ,,. ,,. ,,. 口訣:函數(shù)名稱(chēng)不變,符號(hào)看象限. ,. ,. 口訣:奇變偶不變,符號(hào)看象限. 14、函數(shù)的圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象. 函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù) 的圖象;再將函數(shù)的圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象. 函數(shù)的性質(zhì): ①振幅:;②周期:;③頻率:;④相位:;⑤初相:. 函數(shù),當(dāng)時(shí),取得最小值為 ;當(dāng)時(shí),取得最大值為,則,,. 15、正弦函數(shù)、余弦函數(shù)和正切函數(shù)的圖象與性質(zhì): 函 數(shù) 性 質(zhì) 圖象 定義域 值域 最值 當(dāng)時(shí),;當(dāng) 時(shí),. 當(dāng)時(shí), ;當(dāng) 時(shí),. 既無(wú)最大值也無(wú)最小值 周期性 奇偶性 奇函數(shù) 偶函數(shù) 奇函數(shù) 單調(diào)性 在 上是增函數(shù);在 上是減函數(shù). 在上是增函數(shù);在 上是減函數(shù). 在 上是增函數(shù). 對(duì)稱(chēng)性 對(duì)稱(chēng)中心 對(duì)稱(chēng)軸 對(duì)稱(chēng)中心 對(duì)稱(chēng)軸 對(duì)稱(chēng)中心 無(wú)對(duì)稱(chēng)軸 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化積 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 輔助角公式 ,其中. 降冪公式 (sin^2)x=1-cos2x/2 (cos^2)x=i=cos2x/2 萬(wàn)能公式 令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2) 公式一: 設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α與 -α的三角函數(shù)值之間的關(guān)系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2α及3π/2α與α的三角函數(shù)值之間的關(guān)系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα (以上k∈Z) 注意:在做題時(shí),將a看成銳角來(lái)做會(huì)比較好做。 誘導(dǎo)公式記憶口訣 奇變偶不變,符號(hào)看象限。 同角三角函數(shù)基本關(guān)系 同角三角函數(shù)的基本關(guān)系式 倒數(shù)關(guān)系: tanα cotα=1 sinα cscα=1 cosα secα=1 商的關(guān)系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 兩角和差公式 兩角和與差的三角函數(shù)公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 二倍角公式 二倍角的正弦、余弦和正切公式(升冪縮角公式) tan2A=2tanA/(1-tan2A) sin2a=2sinacosa cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 半角的正弦、余弦和正切公式(降冪擴(kuò)角公式) sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) 另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα) 萬(wàn)能公式 sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 萬(wàn)能公式推導(dǎo) 附推導(dǎo): sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*, (因?yàn)閏os^2(α)+sin^2(α)=1) 再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α)) 然后用α/2代替α即可。 同理可推導(dǎo)余弦的萬(wàn)能公式。正切的萬(wàn)能公式可通過(guò)正弦比余弦得到。 和差化積公式 三角函數(shù)的和差化積公式 sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 積化和差公式 三角函數(shù)的積化和差公式 sinα cosβ=0.5[sin(α+β)+sin(α-β)] cosα sinβ=0.5[sin(α+β)-sin(α-β)] cosα cosβ=0.5[cos(α+β)+cos(α-β)] sinα sinβ=-0.5[cos(α+β)-cos(α-β)] 和差化積公式推導(dǎo) 附推導(dǎo): 首先,我們知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我們把兩式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2 同理,若把兩式相減,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2 同樣的,我們還知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa*cosb 所以我們就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2 同理,兩式相減我們就得到sina*sinb=-(cos(a+b)-cos(a-b))/2 這樣,我們就得到了積化和差的四個(gè)公式: sina*cosb=(sin(a+b)+sin(a-b))/2 cosa*sinb=(sin(a+b)-sin(a-b))/2 cosa*cosb=(cos(a+b)+cos(a-b))/2 sina*sinb=-(cos(a+b)-cos(a-b))/2 好,有了積化和差的四個(gè)公式以后,我們只需一個(gè)變形,就可以得到和差化積的四個(gè)公式. 我們把上述四個(gè)公式中的a+b設(shè)為x,a-b設(shè)為y,那么a=(x+y)/2,b=(x-y)/2 把a(bǔ),b分別用x,y表示就可以得到和差化積的四個(gè)公式: sinx+siny=2sin((x+y)/2)*cos((x-y)/2) sinx-siny=2cos((x+y)/2)*sin((x-y)/2) cosx+cosy=2cos((x+y)/2)*cos((x-y)/2) cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2) 0度 sina=0,cosa=1,tana=0 30度 sina=1/2,cosa=√3/2,tana=√3/3 45度 sina=√2/2,cosa=√2/2,tana=1 60度 sina=√3/2,cosa=1/2,tana=√3 90度 sina=1,cosa=0,tana不存在 120度 sina=√3/2,cosa=-1/2,tana=-√3 150度 sina=1/2,cosa=-√3/2,tana=-√3/3 180度 sina=0,cosa=-1,tana=0 270度 sina=-1,cosa=0,tana不存在 360度 sina=0,cosa=1,tana=0 1、正弦定理:在中,、、分別為角、、的對(duì)邊,為的外接圓的半徑,則有. 2、正弦定理的變形公式:①,,; ②,,; ③; ④. 3、三角形面積公式:. 4、余弦定理:在中,有,, . 5、 余弦定理的推論:,,. 6、設(shè)、、是的角、、的對(duì)邊,則:①若,則; ②若,則;③若,則. - 7 -- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
15 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 三角函數(shù) 三角形 知識(shí)點(diǎn)
鏈接地址:http://zhongcaozhi.com.cn/p-10063570.html