勾股定理如果直角三角形的兩條直角邊長分別為a。那么a2+b2=c2.。a2+b2=c2.。如果一個三角形的三邊長a、b、c滿足a2+b2=c2.那么這個三角形的形狀怎樣。A.5個 B.4個 C.3個。A.a(chǎn)2>b2 B.a(chǎn)2<b2 C.a(chǎn)2≥b2 D.a(chǎn)2≤b2。c= B.a(chǎn)=1。D.如果a2=b2。
勾股定理Tag內容描述:
1、復習:第一章勾股定理,.,(1)從上圖RtABC中,你可得到哪些結論?,(2)若給出圖中的數(shù)據(jù),你又可計算出該三角形的什么?,(3)如圖所示,若CD是斜邊AB上的高,根據(jù)圖中數(shù)據(jù),則CD= .,.,9,12,15,根據(jù)該圖你可得出哪些結論?,.,二、練習,(一)、選擇題,1已知一個Rt的兩邊長分別為3和4,則第三邊長的平方是()A、25 B、14C、7D、7或252下列各組數(shù)中,以a,b,c為邊的三角形不是Rt的是()A、a=1.5,b=2,c=3 B、a=7,b=24,c=25C、a=6,b=8,c=10 D、a=3,b=4,c=5,D,A,.,3若線段a,b,c組成Rt,則它們的比為()A、234 B、346C、51213D、467,C,1、在Rt。
2、勾股定理寶蓋中學 袁靜尊敬的各位評委、各位老師:大家好!我是來自寶蓋中學的袁靜,我今天說課的內容是華師版九年義務教育課程標準實驗教科書數(shù)學八年級下冊第十四章第一節(jié)第一課時勾股定理,勾股定理揭示了直角三角形三邊之間的一種美妙關系,將形與數(shù)密切聯(lián)系起來,在數(shù)學的發(fā)展和現(xiàn)實世界中有著廣泛的作用。本節(jié)是直角三角形相關知識的延續(xù),同時也是學生認識無理數(shù)的基礎,充分體現(xiàn)了數(shù)學知識承前啟后的緊密相關性、連續(xù)性。此外,歷史上勾股定理的發(fā)現(xiàn)反映了人類杰出的智慧,其中蘊涵著豐富的科學與人文價值。下面我將從教材分析、。
3、2019 深圳中考數(shù)學第一輪課時訓練含答案 11:一次函數(shù)的圖象和性質與 2019 深圳中考數(shù)學第一輪課時訓練含答案 09:一元一次不等式(組)及其應用課時訓練(十一 ) 一次函數(shù)的圖象和性質(限時:50 分鐘)|考場過關|1.將直線 y=2x 向上平移 2 個單位, 所得的直線是 ( )A.y=2x+2 B.y=2x2C.y=2(x2) D.y=2(x+2)2.若 k0,b0,b0 B.k0,b0 D.k0 的解集是 ( )圖 K11-3A.x-2 B.x3 C.x0 的最小整數(shù)解為 2,則實數(shù) m的取值范圍是 ( )A.4m16.不等式 3(x-1)5-x的非負整數(shù)解有 ( )A.1 個 B.2 個 C.3 個 D.4 個7.2017畢節(jié) 關于 x 的一元一次不等式-2 的解集為 x4,。
4、人教版八年級數(shù)學下第十七章勾股定理章末專題訓練(有答案)與人教版七年級數(shù)學下冊5.4 平移同步練習(附答案)人教版數(shù)學八年級下冊第十七章 勾股定理 章末專題訓練一、選擇題1.三角形的三邊長分別為 6,8,10,它的最短邊上的高為( D )A.6 B.4.5 C.2.4 D.82.RtABC 中,斜邊 BC2,則的值為( A )A.8 B.4 C.6 D.無法計算3ABC 的三邊分別為下列各組值,其中不是直角三角形三邊的是( C )Aa=41 ,b=40 ,c=9 Ba=1.2,b=1.6,c=2Ca=,b=,c= Da=,b=,c=14已知三角形的三邊長為 n、n 1、m(其中 m22n1) ,則此三角形( C )(A)一定是等邊三。
5、人教版八年級數(shù)學下冊第十七章勾股定理單元測試題(附答案)與人教版八年級數(shù)學下冊第十六章二次根式同步練習(帶答案)人教版數(shù)學八年級下冊第十七章 勾股定理 單元測試題一、選擇題1.如圖所示,一場暴雨過后, 垂直于地面的一棵樹在距地面 1 米處折斷,樹尖 B 恰好碰到地面,經(jīng)測量 AB=2 米, 則樹高為 ( C )A. 米 B. 米 C. (+1)米 D. 3 米 2.發(fā)現(xiàn)下列幾組數(shù)據(jù)能作為三角形的邊:(1)8,15,17;(2)5,12 ,13;(3)12 ,15,20;(4)7 ,24,25.其中能作為直角三角形的三邊長的有( C )A.1 組 B.2 組 C.3 組 D.4 組3下列各組數(shù):3 、4。
6、人教版八年級下冊數(shù)學-第十七章-勾股定理-同步提升練習與答案一、單選題1. ( 2 分 ) 直角三角形的兩條直角邊長分別為 4 和 6,那么斜邊長是( )A. 2 B. 2 C. 52 D. 2. ( 2 分 )如圖,點 A 在半徑為 3 的O 內,OA=,P 為O 上一點,當OPA 取最大值時,PA 的長等于( ).A. B. C. D. 3. ( 2 分 ) 下面各組數(shù)是三角形三邊長,其中為直角三角形的是 ( )A. 8, 12,15 B. 5,6,8 C. 8,15,17 D. 10,15,204. ( 2 分 ) 已知一個直角三角形的兩條邊長分別是 6 和 8,則第三邊長是( )A. 10 B. 8 C. 2。