閥體工藝規(guī)程及夾具設計【含9張CAD圖紙+PDF圖】
閥體工藝規(guī)程及夾具設計【含9張CAD圖紙+PDF圖】,含9張CAD圖紙+PDF圖,閥體,工藝,規(guī)程,夾具,設計,CAD,圖紙,PDF
南通職業(yè)大學2017屆畢業(yè)設計(論文)任務書
學生姓名
張春程
所學專業(yè)
數(shù)控技術
班 級
數(shù)控141
課題名稱
閥體工藝規(guī)程及夾具設計
工作內(nèi)容
(應完成的設計內(nèi)容、論文內(nèi)容)
1、工件圖············································1張
2、毛坯圖············································1張
3、機械加工工藝規(guī)程卡片(工藝卡、工序卡)·············1套
4、夾具裝配總圖及其非標零件圖(工程圖)···············1套
5、畢業(yè)設計說明書····································1份
6、專業(yè)英語資料翻譯··································1篇
7、頂崗實習報告······································1份
工作要求
(設計應達到的性能、指標,論文質(zhì)量要求)
1、生產(chǎn)綱領:中批生產(chǎn)。
2、機械加工工藝規(guī)程能保證設計要求且經(jīng)濟合理,按標準格式用電腦打印。
3、 夾具設計應滿足工藝設計規(guī)定的精度和生產(chǎn)效率,同時還應符合可靠、簡單、方便的原則,夾具本身結構工藝性好。要求計算機輔助制圖并打印。
4、 說明書應概括地介紹設計全貌,對設計的各部分內(nèi)容應作重點說明,分析論證及必要的計算;要求系統(tǒng)性好,條理清楚,圖文并茂,充分表達自己的見解,A4電腦打印,1萬字以上。
5、 外文資料翻譯不少于1萬字符。
6、 頂崗實習報告應根據(jù)實際實習情況寫,不少于3000字。
主要參考
資料
1、 金屬切削工藝人員手冊
2、 金屬切削機床夾具設計手冊
3、 機械制造工藝學課程所有教材及參考書
4、 機械零件設計手冊
5、 機床夾具圖冊
工作進度
要求
1、繪制工件圖,零件結構性工藝分析,繪制毛坯圖。 4~7天
2、編制機械加工工藝過程卡 、編制機械加工工序卡。 5~8天
3、夾具設計(包括夾具總圖、所有非標零件圖)。 15~20天
4、編寫設計說明書。 1~3天
5、修改畢業(yè)設計。 5~10天
6、專業(yè)英語資料翻譯。 1天
7、頂崗實習,完成頂崗實習報告。 1天
8、答辯前的準備、畢業(yè)答辯。 1天
課題組
其他成員
指導教師
(簽名)
陳振玉
教研室主任
(簽名)
部門批準
(蓋章)
機械工程系
簽發(fā)日期
10月20日
注:本任務書一式三份,由指導教師填寫,教研室主任審核,系部批準后下發(fā);學生、指導教師、系部各一份。
南通職業(yè)大學
機械加工工序卡片
產(chǎn)品型號
零件圖號
產(chǎn)品名稱
閥體
零件名稱
閥體
共
12
頁
第
1
頁
車間
工序號
工序名稱
材 料 牌 號
車加工
1
車
45
毛 坯 種 類
毛坯外形尺寸
每毛坯可制件數(shù)
每 臺 件 數(shù)
鋼質(zhì)鑄件
255×175×288.5
1
1
設備名稱
設備型號
設備編號
同時加工件數(shù)
車床
C620-1
1
夾具編號
夾具名稱
切削液
四爪卡盤
工位器具編號
工位器具名稱
工序工時 (分)
準終
單件
工步號
工 步 內(nèi) 容
工 藝 裝 備
主軸轉速
切削速度
進給量
切削深度
進給次數(shù)
工步工時
r/min
m/min
mm/r
mm
機動
輔助
10
粗車閥體255×175的底面
通用夾具,車刀,游標卡尺
設 計(日 期)
校 對(日期)
審 核(日期)
標準化(日期)
會 簽(日期)
標記
處數(shù)
更改文件號
簽字
日 期
標記
處數(shù)
更改文件號
簽 字
日 期
南通職業(yè)大學
機械加工工序卡片
產(chǎn)品型號
零件圖號
產(chǎn)品名稱
零件名稱
共
12
頁
第
2
頁
車間
工序號
工序名稱
材 料 牌 號
鏜加工
2
鏜
45
毛 坯 種 類
毛坯外形尺寸
每毛坯可制件數(shù)
每 臺 件 數(shù)
鋼質(zhì)鑄件
255×175×288.5
1
1
設備名稱
設備型號
設備編號
同時加工件數(shù)
車床
C620-1
夾具編號
夾具名稱
切削液
工位器具編號
工位器具名稱
工序工時 (分)
準終
單件
工步號
工 步 內(nèi) 容
工 藝 裝 備
主軸轉速
切削速度
進給量
切削深度
進給次數(shù)
工步工時
r/min
m/min
mm/r
mm
機動
輔助
20
1、粗鏜閥體內(nèi)下部Φ51
通用夾具,車刀,游標卡尺
2、粗鏜Φ42.5的孔
通用夾具,車刀,游標卡尺
3、粗鏜Φ42.5的孔和Φ48至Φ43的錐形孔
通用夾具,車刀,游標卡尺
4、粗鏜Φ38.9的孔
通用夾具,車刀,游標卡尺
設 計(日 期)
校 對(日期)
審 核(日期)
標準化(日期)
會 簽(日期)
標記
處數(shù)
更改文件號
簽字
日 期
標記
處數(shù)
更改文件號
簽 字
日 期
南通職業(yè)大學
機械加工工序卡片
產(chǎn)品型號
零件圖號
產(chǎn)品名稱
零件名稱
共
12
頁
第
3
頁
車間
工序號
工序名稱
材 料 牌 號
車加工
3
車
45
毛 坯 種 類
毛坯外形尺寸
每毛坯可制件數(shù)
每 臺 件 數(shù)
鋼質(zhì)鑄件
255×175×288.5
1
1
設備名稱
設備型號
設備編號
同時加工件數(shù)
車床
C620-1
夾具編號
夾具名稱
切削液
工位器具編號
工位器具名稱
工序工時 (分)
準終
單件
工步號
工 步 內(nèi) 容
工 藝 裝 備
主軸轉速
切削速度
進給量
切削深度
進給次數(shù)
工步工時
r/min
m/min
mm/r
mm
機動
輔助
30
粗車閥體Φ70上表面
通用夾具,車刀,游標卡尺
設 計(日 期)
校 對(日期)
審 核(日期)
標準化(日期)
會 簽(日期)
標記
處數(shù)
更改文件號
簽字
日 期
標記
處數(shù)
更改文件號
簽 字
日 期
南通職業(yè)大學
機械加工工序卡片
產(chǎn)品型號
零件圖號
產(chǎn)品名稱
零件名稱
共
12
頁
第
4
頁
車間
工序號
工序名稱
材 料 牌 號
鏜加工
4
鏜
45
毛 坯 種 類
毛坯外形尺寸
每毛坯可制件數(shù)
每 臺 件 數(shù)
鋼質(zhì)鑄件
255×175×288.5
1
1
設備名稱
設備型號
設備編號
同時加工件數(shù)
車床
C620-1
1
夾具編號
夾具名稱
切削液
工位器具編號
工位器具名稱
工序工時 (分)
準終
單件
工步號
工 步 內(nèi) 容
工 藝 裝 備
主軸轉速
切削速度
進給量
切削深度
進給次數(shù)
工步工時
r/min
m/min
mm/r
mm
機動
輔助
40
1、粗鏜閥體上部Φ51.3
通用夾具,車刀,游標卡尺
2、對應的Φ48.7的內(nèi)螺紋孔
通用夾具,車刀,游標卡尺
3、Φ39的孔
通用夾具,車刀,游標卡尺
設 計(日 期)
校 對(日期)
審 核(日期)
標準化(日期)
會 簽(日期)
標記
處數(shù)
更改文件號
簽字
日 期
標記
處數(shù)
更改文件號
簽 字
日 期
南通職業(yè)大學
機械加工工序卡片
產(chǎn)品型號
零件圖號
產(chǎn)品名稱
零件名稱
共
12
頁
第
5
頁
車間
工序號
工序名稱
材 料 牌 號
車加工
5
車
45
毛 坯 種 類
毛坯外形尺寸
每毛坯可制件數(shù)
每 臺 件 數(shù)
鋼質(zhì)鑄件
255×175×288.5
1
1
設備名稱
設備型號
設備編號
同時加工件數(shù)
車床
C620-1
夾具編號
夾具名稱
切削液
工位器具編號
工位器具名稱
工序工時 (分)
準終
單件
工步號
工 步 內(nèi) 容
工 藝 裝 備
主軸轉速
切削速度
進給量
切削深度
進給次數(shù)
工步工時
r/min
m/min
mm/r
mm
機動
輔助
50
半精車閥體255×175的底面
通用夾具,車刀,游標卡尺
設 計(日 期)
校 對(日期)
審 核(日期)
標準化(日期)
會 簽(日期)
標記
處數(shù)
更改文件號
簽字
日 期
標記
處數(shù)
更改文件號
簽 字
日 期
南通職業(yè)大學
機械加工工序卡片
產(chǎn)品型號
零件圖號
產(chǎn)品名稱
零件名稱
共
12
頁
第
6
頁
車間
工序號
工序名稱
材 料 牌 號
鏜加工
6
鏜
45
毛 坯 種 類
毛坯外形尺寸
每毛坯可制件數(shù)
每 臺 件 數(shù)
鋼質(zhì)鑄件
255×175×288.5
1
1
設備名稱
設備型號
設備編號
同時加工件數(shù)
車床
C620-1
夾具編號
夾具名稱
切削液
工位器具編號
工位器具名稱
工序工時 (分)
準終
單件
工步號
工 步 內(nèi) 容
工 藝 裝 備
主軸轉速
切削速度
進給量
切削深度
進給次數(shù)
工步工時
r/min
m/min
mm/r
mm
機動
輔助
60
半精鏜Φ48至Φ43的錐形孔
通用夾具,車刀,游標卡尺
設 計(日 期)
校 對(日期)
審 核(日期)
標準化(日期)
會 簽(日期)
標記
處數(shù)
更改文件號
簽字
日 期
標記
處數(shù)
更改文件號
簽 字
日 期
南通職業(yè)大學
機械加工工序卡片
產(chǎn)品型號
零件圖號
產(chǎn)品名稱
零件名稱
共
12
頁
第
7
頁
車間
工序號
工序名稱
材 料 牌 號
鏜加工
7
鏜
45
毛 坯 種 類
毛坯外形尺寸
每毛坯可制件數(shù)
每 臺 件 數(shù)
鋼質(zhì)鑄件
255×175×288.5
1
1
設備名稱
設備型號
設備編號
同時加工件數(shù)
車床
C620-1
夾具編號
夾具名稱
切削液
工位器具編號
工位器具名稱
工序工時 (分)
準終
單件
工步號
工 步 內(nèi) 容
工 藝 裝 備
主軸轉速
切削速度
進給量
切削深度
進給次數(shù)
工步工時
r/min
m/min
mm/r
mm
機動
輔助
70
1、半精鏜閥體上部Φ51.3
通用夾具,車刀,游標卡尺
2、半精鏜對應的Φ48.7的內(nèi)螺紋孔
通用夾具,車刀,游標卡尺
設 計(日 期)
校 對(日期)
審 核(日期)
標準化(日期)
會 簽(日期)
標記
處數(shù)
更改文件號
簽字
日 期
標記
處數(shù)
更改文件號
簽 字
日 期
南通職業(yè)大學
機械加工工序卡片
產(chǎn)品型號
零件圖號
產(chǎn)品名稱
零件名稱
共
12
頁
第
8
頁
車間
工序號
工序名稱
材 料 牌 號
45
毛 坯 種 類
毛坯外形尺寸
每毛坯可制件數(shù)
每 臺 件 數(shù)
鋼質(zhì)鑄件
255×175×288.5
1
1
設備名稱
設備型號
設備編號
同時加工件數(shù)
車床
C616
夾具編號
夾具名稱
切削液
工位器具編號
工位器具名稱
工序工時 (分)
準終
單件
工步號
工 步 內(nèi) 容
工 藝 裝 備
主軸轉速
切削速度
進給量
切削深度
進給次數(shù)
工步工時
r/min
m/min
mm/r
mm
機動
輔助
80
1、車內(nèi)螺紋2-12UN-2B
通用夾具,車刀,游標卡尺
2、倒角
通用夾具,車刀,游標卡尺
設 計(日 期)
校 對(日期)
審 核(日期)
標準化(日期)
會 簽(日期)
標記
處數(shù)
更改文件號
簽字
日 期
標記
處數(shù)
更改文件號
簽 字
日 期
南通職業(yè)大學
機械加工工序卡片
產(chǎn)品型號
零件圖號
產(chǎn)品名稱
零件名稱
共
12
頁
第
9
頁
車間
工序號
工序名稱
材 料 牌 號
鏜加工
9
鏜
45
毛 坯 種 類
毛坯外形尺寸
每毛坯可制件數(shù)
每 臺 件 數(shù)
鋼質(zhì)鑄件
255×175×288.5
1
1
設備名稱
設備型號
設備編號
同時加工件數(shù)
車床
C616
1
夾具編號
夾具名稱
切削液
工位器具編號
工位器具名稱
工序工時 (分)
準終
單件
工步號
工 步 內(nèi) 容
工 藝 裝 備
主軸轉速
切削速度
進給量
切削深度
進給次數(shù)
工步工時
r/min
m/min
mm/r
mm
機動
輔助
90
精鏜Φ48至Φ43的錐形孔
通用夾具,車刀,游標卡尺
設 計(日 期)
校 對(日期)
審 核(日期)
標準化(日期)
會 簽(日期)
標記
處數(shù)
更改文件號
簽字
日 期
標記
處數(shù)
更改文件號
簽 字
日 期
南通職業(yè)大學
機械加工工序卡片
產(chǎn)品型號
零件圖號
產(chǎn)品名稱
零件名稱
共
12
頁
第
10
頁
車間
工序號
工序名稱
材 料 牌 號
鉆加工
10
鉆
45
毛 坯 種 類
毛坯外形尺寸
每毛坯可制件數(shù)
每 臺 件 數(shù)
鋼質(zhì)鑄件
255×175×288.5
1
1
設備名稱
設備型號
設備編號
同時加工件數(shù)
鉆床
Z3025
1
夾具編號
夾具名稱
切削液
工位器具編號
工位器具名稱
工序工時 (分)
準終
單件
工步號
工 步 內(nèi) 容
工 藝 裝 備
主軸轉速
切削速度
進給量
切削深度
進給次數(shù)
工步工時
r/min
m/min
mm/r
mm
機動
輔助
100
1、鉆擴M8的孔
專用夾具,鉆頭,游標卡尺
2、攻絲
專用夾具,鉆頭,游標卡尺
設 計(日 期)
校 對(日期)
審 核(日期)
標準化(日期)
會 簽(日期)
標記
處數(shù)
更改文件號
簽字
日 期
標記
處數(shù)
更改文件號
簽 字
日 期
南通職業(yè)大學
機械加工工序卡片
產(chǎn)品型號
零件圖號
產(chǎn)品名稱
零件名稱
共
12
頁
第
11
頁
車間
工序號
工序名稱
材 料 牌 號
鉆加工
11
鉆
45
毛 坯 種 類
毛坯外形尺寸
每毛坯可制件數(shù)
每 臺 件 數(shù)
鋼質(zhì)鑄件
255×175×288.5
1
1
設備名稱
設備型號
設備編號
同時加工件數(shù)
鉆床
Z3025
1
夾具編號
夾具名稱
切削液
工位器具編號
工位器具名稱
工序工時 (分)
準終
單件
工步號
工 步 內(nèi) 容
工 藝 裝 備
主軸轉速
切削速度
進給量
切削深度
進給次數(shù)
工步工時
r/min
m/min
mm/r
mm
機動
輔助
110
鉆Φ15的孔
專用夾具,鉆頭,游標卡尺
設 計(日 期)
校 對(日期)
審 核(日期)
標準化(日期)
會 簽(日期)
標記
處數(shù)
更改文件號
簽字
日 期
標記
處數(shù)
更改文件號
簽 字
日 期
南通職業(yè)大學
機械加工工序卡片
產(chǎn)品型號
零件圖號
產(chǎn)品名稱
零件名稱
共
12
頁
第
12
頁
車間
工序號
工序名稱
材 料 牌 號
鉆加工
12
锪
45
毛 坯 種 類
毛坯外形尺寸
每毛坯可制件數(shù)
每 臺 件 數(shù)
鋼質(zhì)鑄件
255×175×288.5
1
1
設備名稱
設備型號
設備編號
同時加工件數(shù)
鉆床
Z3025
1
夾具編號
夾具名稱
切削液
工位器具編號
工位器具名稱
工序工時 (分)
準終
單件
工步號
工 步 內(nèi) 容
工 藝 裝 備
主軸轉速
切削速度
進給量
切削深度
進給次數(shù)
工步工時
r/min
m/min
mm/r
mm
機動
輔助
120
锪孔,孔為Φ27.5
專用夾具,鉆頭,游標卡尺
設 計(日 期)
校 對(日期)
審 核(日期)
標準化(日期)
會 簽(日期)
標記
處數(shù)
更改文件號
簽字
日 期
標記
處數(shù)
更改文件號
簽 字
日 期
南通職業(yè)大學
畢業(yè)設計說明書(論文)
題目:閥體工藝規(guī)程及夾具設計
姓 名: 張春程
專業(yè)名稱: 數(shù)控技術
指導老師: 彭淑華
完成時間: 2017.4
南通職業(yè)大學畢業(yè)設計(論文)
摘要(三號宋體加粗居中放置)
正文(小四宋體1.25行距、正常字間距)
摘要的主要內(nèi)容是用簡單的文字全面介紹一下本篇文章,字數(shù)大概在300字左右。
關鍵詞:(格式要求同上)2~4個即可,可用論文中出現(xiàn)頻率較高且能體現(xiàn)論文主要內(nèi)容的詞語
Abstract(三號Times New Roman加粗居中放置)
text(小四Times New Roman1.25行距、正常字間距)
英文摘要的內(nèi)容與中文摘要必須要相對應
Key words:(格式格式同上)關鍵詞必須要與中文關鍵詞一一對應
目錄(三號宋體加粗居中放置)
摘要(三號宋體加粗居中放置) I
Abstract(三號Times New Roman加粗居中放置) II
目錄(三號宋體加粗居中放置) III
第一章 標題(三號宋體加粗居中放置) 1
1.1 標題一(四號宋體加粗) 1
1.1.1 標題小一(小四號宋體) 1
1.1.2 標題小二(小四號宋體) 1
1.2 標題二(四號宋體加粗) 1
1.2.1 標題小一(小四號宋體) 1
1.2.2 標題小二(小四號宋體) 1
參考文獻
致謝
第一章 標題(三號宋體加粗居中放置)
1.1 標題一(四號宋體加粗)
1.1.1 標題小一(小四號宋體)
文字(小四號宋體)
1.1.2 標題小二(小四號宋體)
文字(小四號宋體)
……
1.2 標題二(四號宋體加粗)
1.2.1 標題小一(小四號宋體)
文字(小四號宋體)
1.2.2 標題小二(小四號宋體)
文字(小四號宋體)
……
……
l 論文中所有文字的行間距為1.25倍,字間距為正常。
論文寫作框架:
第一章 序論(主要介紹本課題目前國內(nèi)外發(fā)展現(xiàn)狀、本課題意義與應用、主要內(nèi)容、本篇論文結構)。
第二章到第n-1章 根據(jù)第一章中介紹的論文結構分別介紹課題的各個部分,如硬件電路是如何設計的、軟件流程是如何設計的、主要程序架構等內(nèi)容。
第n章 總結(總結一下本篇論文所做的主要工作)。
參考文獻(“參考文獻”三號宋體加粗居中放置,參考文獻必須另起一頁開始寫)
致謝(“致謝”三號宋體加粗居中放置,致謝必須另起一頁開始寫)
l 每一章均必須位于該章所在頁的第一行。
l 文中的所有插圖與表格均必須進行同一編號并在編號后面寫出該插圖或表格的名稱,其字體大小文正文部分小一號即五號宋體即可。
參考文獻格式
[序號]、[作者(不止一個中間用空格隔開)],[著作名稱],[出版社],[出版時間]
[序號]、[作者(不止一個中間用空格隔開)],[論文名稱],[論文所在雜志名稱],[此論文所在雜志的期和卷號碼或者出版時間]
Robotics and Computer-Integrated Manufacturing 21 (2005) 368378Locating completeness evaluation and revision in fixture planH. Song?, Y. RongCAM Lab, Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609, USAReceived 14 September 2004; received in revised form 9 November 2004; accepted 10 November 2004AbstractGeometry constraint is one of the most important considerations in fixture design. Analytical formulation of deterministiclocation has been well developed. However, how to analyze and revise a non-deterministic locating scheme during the process ofactual fixture design practice has not been thoroughly studied. In this paper, a methodology to characterize fixturing systemsgeometry constraint status with focus on under-constraint is proposed. An under-constraint status, if it exists, can be recognizedwith given locating scheme. All un-constrained motions of a workpiece in an under-constraint status can be automatically identified.This assists the designer to improve deficit locating scheme and provides guidelines for revision to eventually achieve deterministiclocating.r 2005 Elsevier Ltd. All rights reserved.Keywords: Fixture design; Geometry constraint; Deterministic locating; Under-constrained; Over-constrained1. IntroductionA fixture is a mechanism used in manufacturing operations to hold a workpiece firmly in position. Being a crucialstep in process planning for machining parts, fixture design needs to ensure the positional accuracy and dimensionalaccuracy of a workpiece. In general, 3-2-1 principle is the most widely used guiding principle for developing a locationscheme. V-block and pin-hole locating principles are also commonly used.A location scheme for a machining fixture must satisfy a number of requirements. The most basic requirement is thatit must provide deterministic location for the workpiece 1. This notion states that a locator scheme producesdeterministic location when the workpiece cannot move without losing contact with at least one locator. This has beenone of the most fundamental guidelines for fixture design and studied by many researchers. Concerning geometryconstraint status, a workpiece under any locating scheme falls into one of the following three categories:1. Well-constrained (deterministic): The workpiece is mated at a unique position when six locators are made to contactthe workpiece surface.2. Under-constrained: The six degrees of freedom of workpiece are not fully constrained.3. Over-constrained: The six degrees of freedom of workpiece are constrained by more than six locators.In 1985, Asada and By 1 proposed full rank Jacobian matrix of constraint equations as a criterion and formed thebasis of analytical investigations for deterministic locating that followed. Chou et al. 2 formulated the deterministiclocating problem using screw theory in 1989. It is concluded that the locating wrenches matrix needs to be full rank toachieve deterministic location. This method has been adopted by numerous studies as well. Wang et al. 3 consideredARTICLE IN PRESS front matter r 2005 Elsevier Ltd. All rights reserved.doi:10.1016/j.rcim.2004.11.012?Corresponding author. Tel.: +15088316092; fax: +15088316412.E-mail address: hsongwpi.edu (H. Song).locatorworkpiece contact area effects instead of applying point contact. They introduced a contact matrix andpointed out that two contact bodies should not have equal but opposite curvature at contacting point. Carlson 4suggested that a linear approximation may not be sufficient for some applications such as non-prismatic surfaces ornon-small relative errors. He proposed a second-order Taylor expansion which also takes locator error interaction intoaccount. Marin and Ferreira 5 applied Chous formulation on 3-2-1 location and formulated several easy-to-followplanning rules. Despite the numerous analytical studies on deterministic location, less attention was paid to analyzenon-deterministic location.In the Asada and Bys formulation, they assumed frictionless and point contact between fixturing elements andworkpiece. The desired location is q*, at which a workpiece is to be positioned and piecewisely differentiable surfacefunction is gi(as shown in Fig. 1).The surface function is defined as giq? 0: To be deterministic, there should be a unique solution for the followingequation set for all locators.giq 0;i 1;2;.;n,(1)where n is the number of locators and q x0;y0;z0;y0;f0;c0? represents the position and orientation of theworkpiece.Only considering the vicinity of desired location q?; where q q? Dq; Asada and By showed thatgiq giq? hiDq,(2)where hiis the Jacobian matrix of geometry functions, as shown by the matrix in Eq. (3). The deterministic locatingrequirement can be satisfied if the Jacobian matrix has full rank, which makes the Eq. (2) to have only one solutionq q?:rankqg1qx0qg1qy0qg1qz0qg1qy0qg1qf0qg1qc0:qgiqx0qgiqy0qgiqz0qgiqy0qgiqf0qgiqc0:qgnqx0qgnqy0qgnqz0qgnqy0qgnqf0qgnqc026666666664377777777758:9=; 6.(3)Upon given a 3-2-1 locating scheme, the rank of a Jacobian matrix for constraint equations tells the constraint statusas shown in Table 1. If the rank is less than six, the workpiece is under-constrained, i.e., there exists at least one freemotion of the workpiece that is not constrained by locators. If the matrix has full rank but the locating scheme hasmore than six locators, the workpiece is over-constrained, which indicates there exists at least one locator such that itcan be removed without affecting the geometry constrain status of the workpiece.For locating a model other than 3-2-1, datum frame can be established to extract equivalent locating points. Hu 6has developed a systematic approach for this purpose. Hence, this criterion can be applied to all locating schemes.ARTICLE IN PRESSX Y Z O X Y Z O (x0,y0,z0) gi UCS WCS Workpiece Fig. 1. Fixturing system model.H. Song, Y. Rong / Robotics and Computer-Integrated Manufacturing 21 (2005) 368378369Kang et al. 7 followed these methods and implemented them to develop a geometry constraint analysis module intheir automated computer-aided fixture design verification system. Their CAFDV system can calculate the Jacobianmatrix and its rank to determine locating completeness. It can also analyze the workpiece displacement and sensitivityto locating error.Xiong et al. 8 presented an approach to check the rank of locating matrix WL(see Appendix). They also intro-duced left/right generalized inverse of the locating matrix to analyze the geometric errors of workpiece. It hasbeen shown that the position and orientation errors DX of the workpiece and the position errors Dr of locators arerelated as follows:Well-constrained :DX WLDr,(4)Over-constrained :DX WTLWL?1WTLDr,(5)Under-constrained :DX WTLWLWTL?1Dr I6?6? WTLWLWTL?1WLl,(6)where l is an arbitrary vector.They further introduced several indexes derived from those matrixes to evaluate locator configurations, followed byoptimization through constrained nonlinear programming. Their analytical study, however, does not concern therevision of non-deterministic locating. Currently, there is no systematic study on how to deal with a fixture design thatfailed to provide deterministic location.2. Locating completeness evaluationIf deterministic location is not achieved by designed fixturing system, it is as important for designers to knowwhat the constraint status is and how to improve the design. If the fixturing system is over-constrained, informa-tion about the unnecessary locators is desired. While under-constrained occurs, the knowledge about all the un-constrained motions of a workpiece may guide designers to select additional locators and/or revise the locatingscheme more efficiently. A general strategy to characterize geometry constraint status of a locating scheme is describedin Fig. 2.In this paper, the rank of locating matrix is exerted to evaluate geometry constraint status (see Appendixfor derivation of locating matrix). The deterministic locating requires six locators that provide full rank locatingmatrix WL:As shown in Fig. 3, for given locator number n; locating normal vector ai;bi;ci? and locating position xi;yi;zi? foreach locator, i 1;2;.;n; the n ? 6 locating matrix can be determined as follows:WLa1b1c1c1y1? b1z1a1z1? c1x1b1x1? a1y1:aibiciciyi? biziaizi? cixibixi? aiyi:anbncncnyn? bnznanzn? cnxnbnxn? anyn2666666437777775.(7)When rankWL 6 and n 6; the workpiece is well-constrained.When rankWL 6 and n46; the workpiece is over-constrained. This means there are n ? 6 unnecessary locatorsin the locating scheme. The workpiece will be well-constrained without the presence of those n ? 6 locators. Themathematical representation for this status is that there are n ? 6 row vectors in locating matrix that can be expressedas linear combinations of the other six row vectors. The locators corresponding to that six row vectors consist oneARTICLE IN PRESSTable 1RankNumber of locatorsStatuso 6Under-constrained 6 6Well-constrained 646Over-constrainedH. Song, Y. Rong / Robotics and Computer-Integrated Manufacturing 21 (2005) 368378370locating scheme that provides deterministic location. The developed algorithm uses the following approach todetermine the unnecessary locators:1. Find all the combination of n ? 6 locators.2. For each combination, remove that n ? 6 locators from locating scheme.3. Recalculate the rank of locating matrix for the left six locators.4. If the rank remains unchanged, the removed n ? 6 locators are responsible for over-constrained status.This method may yield multi-solutions and require designer to determine which set of unnecessary locators shouldbe removed for the best locating performance.When rankWLo6; the workpiece is under-constrained.3. Algorithm development and implementationThe algorithm to be developed here will dedicate to provide information on un-constrained motions of theworkpiece in under-constrained status. Suppose there are n locators, the relationship between a workpieces position/ARTICLE IN PRESSFig. 2. Geometry constraint status characterization.X Z Y (a1,b1,c1) 2,b2,c2) (x1,y1,z1) (x2,y2,z2) (ai,bi,ci) (xi,yi,zi) (aFig. 3. A simplified locating scheme.H. Song, Y. Rong / Robotics and Computer-Integrated Manufacturing 21 (2005) 368378371orientation errors and locator errors can be expressed as follows:DX DxDyDzaxayaz2666666666437777777775w11:w1i:w1nw21:w2i:w2nw31:w3i:w3nw41:w4i:w4nw51:w5i:w5nw61:w6i:w6n2666666666437777777775?Dr1:Dri:Drn2666666437777775,(8)where Dx;Dy;Dz;ax;ay;azare displacement along x, y, z axis and rotation about x, y, z axis, respectively. Driisgeometric error of the ith locator. wijis defined by right generalized inverse of the locating matrix Wr WTLWLWTL?15.To identify all the un-constrained motions of the workpiece, V dxi;dyi;dzi;daxi;dayi;dazi? is introduced such thatV DX 0.(9)Since rankDXo6; there must exist non-zero V that satisfies Eq. (9). Each non-zero solution of V represents an un-constrained motion. Each term of V represents a component of that motion. For example, 0;0;0;3;0;0? says that therotation about x-axis is not constrained. 0;1;1;0;0;0? means that the workpiece can move along the direction given byvector 0;1;1?: There could be infinite solutions. The solution space, however, can be constructed by 6 ? rankWLbasic solutions. Following analysis is dedicated to find out the basic solutions.From Eqs. (8) and (9)VX dxDx dyDy dzDz daxDax dayDay dazDaz dxXni1w1iDri dyXni1w2iDri dzXni1w3iDri daxXni1w4iDri dayXni1w5iDri dazXni1w6iDriXni1Vw1i;w2i;w3i;w4i;w5i;w6i?TDri 0.10Eq. (10) holds for 8Driif and only if Eq. (11) is true for 8i1pipn:Vw1i;w2i;w3i;w4i;w5i;w6i?T 0.(11)Eq. (11) illustrates the dependency relationships among row vectors of Wr: In special cases, say, all w1jequal to zero,V has an obvious solution 1, 0, 0, 0, 0, 0, indicating displacement along the x-axis is not constrained. This is easy tounderstand because Dx 0 in this case, implying that the corresponding position error of the workpiece is notdependent of any locator errors. Hence, the associated motion is not constrained by locators. Moreover, a combinedmotion is not constrained if one of the elements in DX can be expressed as linear combination of other elements. Forinstance, 9w1ja0;w2ja0; w1j ?w2jfor 8j: In this scenario, the workpiece cannot move along x- or y-axis. However, itcan move along the diagonal line between x- and y-axis defined by vector 1, 1, 0.To find solutions for general cases, the following strategy was developed:1. Eliminate dependent row(s) from locating matrix. Let r rank WL; n number of locator. If ron; create a vectorin n ? r dimension space U u1:uj:un?rhi1pjpn ? r; 1pujpn: Select ujin the way that rankWL r still holds after setting all the terms of all the ujth row(s) equal to zero. Set r ? 6 modified locating matrixWLMa1b1c1c1y1? b1z1a1z1? c1x1b1x1? a1y1:aibiciciyi? biziaizi? cixibixi? aiyi:anbncncnyn? bnznanzn? cnxnbnxn? anyn2666666437777775r?6,where i 1;2;:;niauj:ARTICLE IN PRESSH. Song, Y. Rong / Robotics and Computer-Integrated Manufacturing 21 (2005) 3683783722. Compute the 6 ? n right generalized inverse of the modified locating matrixWr WTLMWLMWTLM?1w11:w1i:w1rw21:w2i:w2rw31:w3i:w3rw41:w4i:w4rw51:w5i:w5rw61:w6i:w6r26666666664377777777756?r3. Trim Wrdown to a r ? rfull rank matrix Wrm: r rankWLo6: Construct a 6 ? r dimension vector Q q1:qj:q6?rhi1pjp6 ? r; 1pqjpn: Select qjin the way that rankWr r still holds after setting all theterms of all the qjth row(s) equal to zero. Set r ? r modified inverse matrixWrmw11:w1i:w1r:wl1:wli:wlr:w61:w6i:w6r26666664377777756?6,where l 1;2;:;6 laqj:4. Normalize the free motion space. Suppose V V1;V2;V3;V4;V5;V6? is one of the basic solutions of Eq. (10) withall six terms undetermined. Select a term qkfrom vector Q1pkp6 ? r: SetVqk ?1;Vqj 0 j 1;2;:;6 ? r;jak;(5. Calculated undetermined terms of V: V is also a solution of Eq. (11). The r undetermined terms can be found asfollows.v1:vs:v62666666437777775wqk1:wqki:wqkr2666666437777775?w11:w1i:w1r:wl1:wli:wlr:w61:w6i:w6r2666666437777775?1,where s 1;2;:;6saqj;saqk;l 1;2;:;6 laqj:6. Repeat step 4 (select another term from Q) and step 5 until all 6 ? r basic solutions have been determined.Based on this algorithm, a C+ program was developed to identify the under-constrained status and un-constrained motions.Example 1. In a surface grinding operation, a workpiece is located on a fixture system as shown in Fig. 4. The normalvector and position of each locator are as follows:L1:0, 0, 10, 1, 3, 00,L2:0, 0, 10, 3, 3, 00,L3:0, 0, 10, 2, 1, 00,L4:0, 1, 00, 3, 0, 20,L5:0, 1, 00, 1, 0, 20.Consequently, the locating matrix is determined.WL0013?100013?300011?20010?203010?2012666666437777775.ARTICLE IN PRESSH. Song, Y. Rong / Robotics and Computer-Integrated Manufacturing 21 (2005) 368378373This locating system provides under-constrained positioning since rankWL 5o6: The program then calculatesthe right generalized inverse of the locating matrix.Wr000000:50:5?1?0:51:50:75?1:251:5000:250:25?0:5000:5?0:50000000:5?0:526666666643777777775.The first row is recognized as a dependent row because removal of this row does not affect rank of the matrix. Theother five rows are independent rows. A linear combination of the independent rows is found according therequirement in step 5 of the procedure for under-constrained status. The solution for this special case is obvious that allthe coefficients are zero. Hence, the un-constrained motion of workpiece can be determined as V ?1; 0; 0; 0; 0; 0?:This indicates that the workpiece can move along x direction. Based on this result, an additional locator should beemployed to constraint displacement of workpiece along x-axis.Example 2. Fig. 5 shows a knuckle with 3-2-1 locating system. The normal vector and position of each locator in thisinitial design are as follows:L1:0, 1, 00, 896, ?877, ?5150,L2:0, 1, 00, 1060, ?875, ?3780,L3:0, 1, 00, 1010, ?959, ?6120,L4:0.9955, ?0.0349, 0.0880, 977, ?902, ?6240,L5:0.9955, ?0.0349, 0.0880, 977, ?866, ?6240,L6:0.088, 0.017, ?0.9960, 1034, ?864, ?3590.The locating matrix of this configuration isWL010515:000:8960010378:001:0600010612:001:01000:9955?0:03490:0880?101:2445?707:26640:86380:9955?0:03490:0880?98:0728?707:26640:82800:08800:0170?0:9960866:6257998:24660:093626666666643777777775,rankWL 5o6 reveals that the workpiece is under-constrained. It is found that one of the first five rows can beremoved without varying the rank of locating matrix. Suppose the first row, i.e., locator L1is removed from WL; theARTICLE IN PRESSXZYL3L4L5L2L1Fig. 4. Under-constrained locating scheme.H. Song, Y. Rong / Robotics and Computer-Integrated Manufacturing 21 (2005) 368378374modified locating matrix turns intoWLM010378:001:0600010612:001:01000:9955?0:03490:0880?101:2445?707:26640:86380:9955?0:03490:0880?98:0728?707:26640:82800:08800:0170?0:996866:6257998:24660:09362666666437777775.The right generalized inverse of the modified locating matrix isWr1:8768?1:8607?20:666521:37160:49953:0551?2:0551?32:444832:44480?1:09561:086212:0648?12:4764?0:2916?0:00440:00440:0061?0:006100:0025?0:00250:0065?0:00690:0007?0:00040:00040:0284?0:0284026666666643777777775.The program checked the dependent row and found every row is dependent on other five rows. Without losinggenerality, the first row is regarded as dependent row. The 5 ? 5 modified inverse matrix isWrm3:0551?2:0551?32:444832:44480?1:09561:086212:0648?12:4764?0:2916?0:00440:00440:0061?0:006100:0025?0:00250:0065?0:00690:0007?0:00040:00040:0284?0:028402666666437777775.The undetermined solution is V ?1; v2; v3; v4; v5; v6?:To calculate the five undetermined terms of V according to step 5,1:8768?1:8607?20:666521:37160:499526666666643777777775T?3:0551?2:0551?32:444832:44480?1:09561:086212:0648?12:4764?0:2916?0:00440:00440:0061?0:006100:0025?0:00250:0065?0:00690:0007?0:00040:00040:0284?0:0284026666666643777777775?1 0; ?1:713; ?0:0432; ?0:0706; 0:04?.Substituting this result into the undetermined solution yields V ?1;0; ?1:713; ?0:0432; ?0:0706; 0:04?ARTICLE IN PRESSFig. 5. Knuckle 610 (modified from real design).H. Song, Y. Rong / Robotics and Computer-Integrated Manufacturing 21 (2005) 368378375This vector represents a free motion defined by the combination of a displacement along ?1, 0, ?1.713 directioncombined and a rotation about ?0.0432, ?0.0706, 0.04. To revise this locating configuration, another locator shouldbe added to constrain this free motion of the workpiece, assuming locator L1was removed in step 1. The program canalso calculate the free motions of the workpiece if a locator other than L1was removed in step 1. This provides morerevision options for designer.4. SummaryDeterministic location is an important requirement for fixture locating scheme design. Analytical criterion fordeterministic status has been well established. To further study non-deterministic status, an algorithm for checking thegeometry constraint status has been developed. This algorithm can identify an under-constrained status and indicatethe un-constrained motions of workpiece. It can also recognize an over-constrained status and unnecessary locators.The output information can assist designer to analyze and improve an existing locating scheme.Appendix. Locating matrixConsider a general workpiece as shown in Fig. 6. Choose reference frame fWg fixed to the workpiece. Let fGg andfLig be the global frame and the ith locator frame fixed relative to it. We haveFiXw;Hw;rwi fiXli;Hli;rli,(12)where Xw2 3?1and Hw2 3?1(Xli2 3?1and Hli2 3?1) are the position and orientation of the workpiece(the ith locator) in the global frame fGg; rwi2 3?1(rli2 3?1) is the position of the ith contact point between theworkpiece and the ith locator in the workpiece frame fWg (the ith locator frame fLig).Assume that DXw2 3?1(DHw2 3?1) and Drwi2 3?1are the deviations of the position Xw2 3?1(orientationHw2 3?1) of the workpiece and the position of the ith contact point rwi2 3?1; respectively. Then we have the actualcontact on the wor
收藏