河北省2019年中考數(shù)學(xué)總復(fù)習(xí) 第五單元 四邊形 課時訓(xùn)練23 矩形、菱形、正方形練習(xí)

上傳人:Sc****h 文檔編號:90005953 上傳時間:2022-05-13 格式:DOCX 頁數(shù):12 大?。?41.27KB
收藏 版權(quán)申訴 舉報 下載
河北省2019年中考數(shù)學(xué)總復(fù)習(xí) 第五單元 四邊形 課時訓(xùn)練23 矩形、菱形、正方形練習(xí)_第1頁
第1頁 / 共12頁
河北省2019年中考數(shù)學(xué)總復(fù)習(xí) 第五單元 四邊形 課時訓(xùn)練23 矩形、菱形、正方形練習(xí)_第2頁
第2頁 / 共12頁
河北省2019年中考數(shù)學(xué)總復(fù)習(xí) 第五單元 四邊形 課時訓(xùn)練23 矩形、菱形、正方形練習(xí)_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《河北省2019年中考數(shù)學(xué)總復(fù)習(xí) 第五單元 四邊形 課時訓(xùn)練23 矩形、菱形、正方形練習(xí)》由會員分享,可在線閱讀,更多相關(guān)《河北省2019年中考數(shù)學(xué)總復(fù)習(xí) 第五單元 四邊形 課時訓(xùn)練23 矩形、菱形、正方形練習(xí)(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 課時訓(xùn)練(二十三) 矩形、菱形、正方形 (限時:50分鐘) |夯實基礎(chǔ)| 1.[2018·日照] 如圖K23-1,在四邊形ABCD中,對角線AC,BD相交于點O,AO=CO,BO=DO,添加下列條件,不能判定四邊形ABCD是菱形的是 (  ) 圖K23-1 A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO 2.[2018·哈爾濱] 如圖K23-2,在菱形ABCD中,對角線AC,BD相交于點O,BD=8,tan∠ABD=34,則線段AB的長為(  ) 圖K23-2 A.7 B.27 C.5 D.10 3.[2018·宿遷] 如圖

2、K23-3,菱形ABCD的對角線AC,BD相交于點O,點E為CD的中點,若菱形ABCD的周長為16,∠BAD=60°,則△OCE的面積是 (  ) 圖K23-3 A.3 B.2 C.23 D.4 4.[2018·蘭州] 如圖K23-4,矩形ABCD中,AB=3,BC=4,BE∥DF且BE與DF之間的距離為3,則AE的長度是 (  ) 圖K23-4 A.7 B.38 C.78 D.58 5.[2018·臨沂] 如圖K23-5,點E,F,G,H分別是四邊形ABCD邊AB,BC,CD,DA的中點.則下列說法中正確的個數(shù)是 (  ) 圖K23-5

3、 ①若AC=BD,則四邊形EFGH為矩形; ②若AC⊥BD,則四邊形EFGH為菱形; ③若四邊形EFGH是平行四邊形,則AC與BD互相平分; ④若四邊形EFGH是正方形,則AC與BD互相垂直且相等. A.1 B.2 C.3 D.4 6.[2018·株洲] 如圖K23-6,矩形ABCD的對角線AC與BD相交于點O,AC=10,P,Q分別為AO,AD的中點,則PQ的長度為    .? 圖K23-6 7.[2018·黔東南州] 已知一個菱形的邊長為2,較長的對角線長為23,則這個菱形的面積是    .? 8.[2018·廣州] 如圖K23-7,若菱形AB

4、CD的頂點A,B的坐標(biāo)分別為(3,0),(-2,0),點D在y軸上,則點C的坐標(biāo)是    .? 圖K23-7 9.[2018·南通] 如圖K23-8,在△ABC中,AD,CD分別平分∠BAC和∠ACB,AE∥CD,CE∥AD.若從三個條件:①AB=AC;②AB=BC;③AC=BC中選擇一個作為已知條件,則能使四邊形ADCE為菱形的是    (填序號).? 圖K23-8 10.[2018·舟山] 如圖K23-9,等邊三角形AEF的頂點E,F在矩形ABCD的邊BC,CD上,且∠CEF=45°.求證:矩形ABCD是正方形. 圖K23-9

5、 11.[2018·湘西州] 如圖K23-10,在矩形ABCD中,E是AB的中點,連接DE,CE. 圖K23-10 (1)求證:△ADE≌△BCE; (2)若AB=6,AD=4,求△CDE的周長. 12.[2018·南京] 如圖K23-11,在四邊形ABCD中,BC=CD,∠C=2∠BAD.O是四邊形ABCD內(nèi)一點,且OA=OB=OD.求證: 圖K23-11 (1)∠BOD=∠C; (2)四邊形OBCD是菱形. |拓展提升| 13.[2018·自貢] 如圖K23-12,在△

6、ABC中,AC=BC=2,AB=1,將它沿AB翻折得到△ABD,則四邊形ADBC的形狀是    ;點P,E,F分別為線段AB,AD,DB上的任意點,則PE+PF的最小值是    .? 圖K23-12 14.[2018·武漢] 以正方形ABCD的邊AD為邊作等邊三角形ADE,則∠BEC的度數(shù)是    .? 15.[2018·玉林] 如圖K23-13,在?ABCD中,DC>AD,四個角的平分線AE,DE,BF,CF的交點分別是E,F,過點E,F分別作DC與AB間的垂線段MM'與NN',在DC與AB上的垂足分別是M,N與M',N',連接EF. 圖K23-13 (1)求證:四邊形EF

7、NM是矩形; (2)已知:AE=4,DE=3,DC=9,求EF的長. 參考答案 1.B 2.C [解析] 由菱形性質(zhì)可知BO=DO=4,∠AOB=90°,由tan∠ABD=34,可知AO=3,由勾股定理得AB=5. 3.A [解析] 根據(jù)菱形ABCD的周長為16可知AB=BC=CD=DA=4,再根據(jù)∠BAD=60°得:BD=4,即BO=DO=2,根據(jù)勾股定理得CO=23,從而求得S△COD=23,根據(jù)OE是中線得S△OCE=12S△COD=3,故選A. 4.C [解析] 設(shè)AE=x,則BE=9+x2,由S四邊形BEDF=3BE=3DE,所以BE=

8、DE.即9+x2=4-x,解得x=78. 5.A [解析] ∵點E,F,G,H分別是四邊形ABCD邊AB,BC,CD,DA的中點,∴EH=12BD=FG,EH∥BD∥FG,∴四邊形EFGH是平行四邊形.由AC=BD可得EH=EF,∴四邊形EFGH為菱形,①錯誤;由AC⊥BD,可得EH⊥EF,∴四邊形EFGH為矩形,②錯誤;由四邊形EFGH是平行四邊形,無法得到AC與BD互相平分,③錯誤;由四邊形EFGH是正方形,可得到AC與BD互相垂直且相等,④正確.故選A. 6.52 [解析] ∵四邊形ABCD是矩形,∴BD=AC=10,OD=12BD,∴OD=5,∵P,Q分別為AO,AD的中點,∴PQ

9、=12OD=52. 7.23 [解析] 如圖,在菱形ABCD中,AB=2,AC=23,則AO=3,∠AOB=90°,由勾股定理得OB=1.則BD=2,∴S菱形ABCD=12AC·BD=12×23×2=23. 8.(-5,4) [解析] 由A,B的坐標(biāo)分別為(3,0),(-2,0)可得AO=3,AB=5.由菱形ABCD四邊相等可得CD=AD=AB=5,在Rt△AOD中,由勾股定理可得OD=AD2-AO2=4,所以C(-5,4). 9.② [解析] ∵AD,CD分別平分∠BAC和∠ACB,∴∠DAC=12∠BAC,∠DCA=12∠BCA.∵AE∥CD,CE∥AD,∴四邊形ADCE為平行四

10、邊形.要使四邊形ADCE為菱形,則需要條件AD=CD,∴需要條件∠DAC=∠DCA.∴需要條件∠BAC=∠BCA.∴需要條件②AB=BC. 10.證明:∵四邊形ABCD是矩形, ∴∠B=∠D=∠C=90°. ∵△AEF是等邊三角形, ∴AE=AF,∠AEF=∠AFE=60°. 又∠CEF=45°,∴∠CFE=∠CEF=45°, ∴∠AFD=∠AEB=180°-45°-60°=75°, ∴△ABE≌△ADF(AAS),∴AB=AD, ∴矩形ABCD是正方形. 11.解:(1)證明:在矩形ABCD中,AD=BC,∠A=∠B=90°. ∵E是AB的中點,∴AE=BE. 在△AD

11、E與△BCE中,AD=BC,∠A=∠B,AE=BE, ∴△ADE≌△BCE(SAS). (2)由(1)知:△ADE≌△BCE,則DE=EC. 在Rt△ADE中,AD=4,AE=12AB=3, 由勾股定理知,DE=AD2+AE2=42+32=5, ∴△CDE的周長=2DE+DC=2DE+AB=2×5+6=16. 12.證明:(1)∵OA=OB=OD, ∴點A,B,D在以點O為圓心,OA為半徑的圓上. ∴∠BOD=2∠BAD. 又∠C=2∠BAD,∴∠BOD=∠C. (2)如圖,連接OC. ∵OB=OD,CB=CD,OC=OC, ∴△OBC≌△ODC. ∴∠BOC=∠DO

12、C,∠BCO=∠DCO. ∵∠BOD=∠BOC+∠DOC, ∠BCD=∠BCO+∠DCO, ∴∠BOC=12∠BOD,∠BCO=12∠BCD. 又∠BOD=∠BCD. ∴∠BOC=∠BCO, ∴BO=BC. 又OB=OD,BC=CD, ∴OB=BC=CD=DO, ∴四邊形OBCD是菱形. 13.菱形 154 [解析] ∵AD=BD=AC=BC,∴四邊形ADBC是菱形. 作E關(guān)于AB的對稱點E',根據(jù)菱形的對稱性可知點E'在AC上,連接E'F交AB于點P, ∴PE+PF=PE'+PF=E'F,當(dāng)E'F是AC,BD之間的距離時,E'F為最小. 過點B作BH⊥AC于點H

13、,設(shè)AH=x,則CH=2-x, 由AB2-AH2=BH2=BC2-CH2,得1-x2=4-(2-x)2,解得x=14,∴BH=1-(14)?2=154.∴PE+PF的最小值為154. 14.30°或150° [解析] 分兩種情況:(1)如圖①,等邊三角形ADE在正方形ABCD內(nèi)部時,連接CE,BE, 則∠CDE=∠CDA-∠ADE=90°-60°=30°,∵CD=DE,∴∠DCE=75°,∴∠ECB=15°,同理可以得到∠EBC=15°,∴∠BEC=150°. (2)如圖②,等邊三角形ADE在正方形ABCD外部時,連接CE,BE, 則∠CDE=∠CDA+∠ADE=90°+60°=

14、150°,∵CD=DE,∴∠CED=15°,同理∠AEB=15°,∴∠BEC=∠AED-∠CED-∠AEB=60°-15°-15°=30°. 15.解:(1)證明:過點E,F分別作AD,BC的垂線,垂足分別是G,H. ∵∠3=∠4,∠1=∠2,EG⊥AD, EM⊥CD,EM'⊥AB, ∴EG=ME,EG=EM', ∴EG=ME=EM'=12MM', 同理可證:FH=NF=N'F=12NN'. ∵CD∥AB,MM'⊥CD,NN'⊥CD, ∴MM'=NN',∴ME=NF=EG=FH. ∵MM'∥NN',∴四邊形EFNM是平行四邊形, 又∵MM'⊥CD, ∴四邊形EFN

15、M是矩形. (2)∵DC∥AB,∴∠CDA+∠DAB=180°, ∵∠3=12∠CDA,∠2=12∠DAB, ∴∠3+∠2=90°.∴∠DEA=90°. 在Rt△DEA中,∵AE=4,DE=3, ∴AD=32+42=5. ∵四邊形ABCD是平行四邊形, ∴∠DAB=∠DCB, 又∵∠2=12∠DAB,∠5=12∠DCB, ∴∠2=∠5,由(1)知GE=NF, ∴在△GEA和△NFC中,∠2=∠5,∠EGA=∠FNC=90°,GE=NF, ∴△GEA≌△NFC,∴AG=CN. 在Rt△DME和Rt△DGE中, ∵DE=DE,ME=EG, ∴Rt△DME≌Rt△DGE, ∴DG=DM,∴DM+CN=DG+AG=AD=5, ∴MN=CD-DM-CN=9-5=4. ∵四邊形EFNM是矩形,∴EF=MN=4. 12

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!