臥式升降臺銑床主傳動系統(tǒng)設計主軸箱[P=4kw 轉速35.5 1600 公比1.41]
《臥式升降臺銑床主傳動系統(tǒng)設計主軸箱[P=4kw 轉速35.5 1600 公比1.41]》由會員分享,可在線閱讀,更多相關《臥式升降臺銑床主傳動系統(tǒng)設計主軸箱[P=4kw 轉速35.5 1600 公比1.41](54頁珍藏版)》請在裝配圖網上搜索。
1、 機械課程設計 臥式升降臺銑床主傳動系統(tǒng)設計 院 系:機械工程學院 專 業(yè):機械設計制造及其自動化專業(yè) 班 級: 學 號: 姓 名: 指導老師: 日 期: 目錄 第1章 機床用途、性能及結構簡單說明 6 第2章 設計部分的基本技術特性和結構分析 7 2.1銑床主參數和基本參數 7 2.2 確定傳動公比 7 2.3擬定參數的步驟和方法 7 2.3.1 極限切削速度Vmax、Vmin 7 2.3.2 主軸的極限轉速 8 第3章 運動設計 9 3.1 主
2、電機功率——動力參數的確定 9 3.2確定結構式 9 3.3 確定結構網 10 3.4 繪制轉速圖和傳動系統(tǒng)圖 10 3.5 確定各變速組此論傳動副齒數 11 3.6 核算主軸轉速誤差 12 第4章 設計部分的動力計算 13 4.1 帶傳動設計 13 4.1.1計算設計功率Pd 13 4.1.2選擇帶型 14 4.1.3確定帶輪的基準直徑并驗證帶速 14 4.1.4確定中心距離、帶的基準長度并驗算小輪包角 15 4.1.5確定帶的根數z 16 4.1.6確定帶輪的結構和尺寸 16 4.1.7確定帶的張緊裝置 16 4.1.8計算壓軸力 16 4.2 計算轉速的計
3、算 18 4.3 齒輪模數計算及驗算 19 4.4 傳動軸最小軸徑的初定 24 4.5 主軸合理跨距的計算 25 4.6 軸承的選擇 26 4.7 鍵的規(guī)格 26 4.8變速操縱機構的選擇 26 4.9主軸合理跨距的計算 26 4.10 軸承壽命校核 27 第5章 主軸箱結構設計及說明 29 5.1 結構設計的內容、技術要求和方案 29 5.2 展開圖及其布置 30 結束語 31 參考文獻 32 全套圖紙加扣 3346389411或3012250582 3 第1章 機床用途、性能及結構簡單說明 機床技術參數有主參數和基本參數
4、,他們是運動傳動和結構設計的依據,影響到機床是否滿足所需要的基本功能要求,參數擬定就是機床性能設計。主參數是直接反映機床的加工能力、決定和影響其他基本參數的依據,如銑床的最大加工直徑,一般在設計題目中給定,基本參數是一些加工件尺寸、機床結構、運動和動力特性有關的參數,可歸納為尺寸參數、運動參數和動力參數。 通用銑床工藝范圍廣,所加工的工件形狀、尺寸和材料各不相同,有粗加工又有精加工;用硬質合金刀具又用高速鋼刀具。因此,必須對所設計的機床工藝范圍和使用情況做全面的調研和統(tǒng)計,依據某些典型工藝和加工對象,兼顧其他的可能工藝加工的要求,擬定機床技術參數,擬定參數時,要考慮機床發(fā)展趨勢和同國內外同類
5、機床的對比,使擬定的參數最大限度地適應各種不同的工藝要求和達到機床加工能力下經濟合理。 機床主傳動系因機床的類型、性能、規(guī)格和尺寸等因素的不同,應滿足的要求也不一樣。設計機床主傳動系時最基本的原則就是以最經濟、合理的方式滿足既定的要求。在設計時應結合具體機床進行具體分析,一般應滿足的基本要求有:滿足機床使用性能要求。首先應滿足機床的運動特性,如機床主軸油足夠的轉速范圍和轉速級數;滿足機床傳遞動力的要求。主電動機和傳動機構能提供足夠的功率和轉矩,具有較高的傳動效率;滿足機床工作性能要求。主傳動中所有零部件有足夠的剛度、精度和抗震性,熱變形特性穩(wěn)定;滿足產品的經濟性要求。傳動鏈盡可能簡短,零件數
6、目要少,以便節(jié)約材料,降低成本。 54 第2章 設計部分的基本技術特性和結構分析 2.1銑床主參數和基本參數 題目序號 正轉最低轉速 nmin( ) 正轉最高轉速 nmin( ) 電機 功率 N(kw) 公比 4 35.5 1600 4 1.41 2.2 確定傳動公比 根據任務書提供的條件,可知傳動公比=1.41。 根據《機械制造裝備設計》由公式: 則有: Z=+1 轉速范圍===45.07由上述綜合可得 由此可知機床主軸共有12級。 因為=1.41=1.06,根據《機械制造裝備設計》查表標準數列。首先找到最小極限轉速31.5,
7、再每跳過5個數(1.26~1.06)取一個轉速,即可得到公比為1.41的數列:35.5、50、71、100、140、200、280、400、560、800、1120、1600 r/min。 2.3擬定參數的步驟和方法 2.3.1 極限切削速度Vmax、Vmin 根據典型的和可能的工藝選取極限切削速度要考慮: 允許的切速極限參考值如下: 表 2.1 加 工 條 件 Vmax(m/min) Vmin(m/min) 硬質合金刀具粗加工鑄鐵工件 30~50 硬質合金刀具半精或精加工碳鋼工件 150~300 螺紋加工和鉸孔 3~8
8、 2.3.2 主軸的極限轉速 計算銑床主軸極限轉速時的加工直徑,則主軸極限轉速應為 結合題目條件,取標準數列數值, 取 考慮到設計的結構復雜程度要適中,故采用常規(guī)的擴大傳動。各級轉速數列可直接從標準的數列表中查出,按標準轉速數列為: 35.5、50、71、100、140、200、280、400、560、800、1120、1600 r/min。 第3章 運動設計 3.1 主電機功率——動力參數的確定 合理地確定電機功率N,使機床既能充分發(fā)揮其性能,滿足生產需要,又不致使電機經常輕載而降低功率因素。 根據
9、題設條件電機功率為4KW 可選取電機為:Y112M-4額定功率為4KW,滿載轉速為1440r/min. 3.2確定結構式 可以按照Z=12進行分配 已知Z=x3b a,b為正整數,即Z應可以分解為2和3的因子,以便用2、3聯(lián)滑移齒輪實現變速。 確定變速組傳動副數目 實現12級主軸轉速變化的傳動系統(tǒng)可以寫成多種傳動副組合: a)12=3 b)12=43 c)12=3 d)12=2 12=2 在上述的方案中1和2有時可以省掉一根軸。缺點是有一個傳動組內有四個傳動副。如果用一個四聯(lián)滑移齒輪的話則會增加軸向尺寸;如果用兩個滑移雙聯(lián)齒輪,
10、則操縱機構必須互梭以防止兩個滑移齒輪同時嚙合。所以一般少用。 3,4,5方案可根據下面原則比較:從電動機到主軸,一般為降速傳動。接近電動機處的零件,轉速較高從而轉矩較小,尺寸也較小。如使傳動副較多的傳動組放在接近電動機處,則可使小尺寸的零件多些,大尺寸的零件就可少些,就省材料了。這就是“前多后少”的原則。從這個角度考慮,以取12=3的方案為好。 在12=2中,又因基本組和擴大組排列順序的不同而有不同的方案??赡艿牧N方案,其結構網和結構式見下面的圖。在這些方案中可根據下列原則選擇最佳方案。 1)傳動副的極限傳動比和傳動組的極限變速范圍 在降速傳動時,為防止被動齒輪的直徑過大而使徑向尺寸
11、太大,常限制最小傳動比1/4。在升速時,為防止產生過大的震動和噪聲,常限制最大傳動比。因此主傳動鏈任一傳動組的最大變速范圍一般為。方案a b c d是可行的。方案d f是不可行的。 同時,最后傳動組與最后擴大組往往是一致的,安裝在主軸與主軸前一傳動軸的具有極限或接近極限傳動比的齒輪副承受最大扭矩,在結構設計上可以獲得較為滿意的處理。這也就是最后傳動組的傳動副經常為2的另一原因。設計銑床主變速傳動系時,為避免從動齒輪尺寸過大而增加箱體的徑向尺寸,在降速變速中,一般限制限制最小變速比 ;為避免擴大傳動誤差,減少震動噪聲,在升速時一般限制最大轉速比。斜齒圓柱齒輪傳動較平穩(wěn),可取。因此在主變
12、速鏈任一變速組的最大變速范圍。在設計時必須保證中間變速軸的變速范圍最小。 綜合上述可得:主傳動部件的運動參數 ,=35.5,Z=12,=1.41 3.3 確定結構網 根據“前多后少” , “先降后升” , 前密后疏,結構緊湊的原則易知第二擴大組的變速范圍r=φ(P3-1)x=1.414=3.95〈8 滿足要求 圖3.1 結構網圖 3.4 繪制轉速圖和傳動系統(tǒng)圖 (1)選擇電動機:采用Y系列封閉自扇冷式鼠籠型三相異步電動機。 (2)繪制轉速圖:
13、 圖3.2 轉速圖 (3)畫主傳動系統(tǒng)圖。根據系統(tǒng)轉速圖及已知的技術參數,畫主傳動系統(tǒng)圖如圖3.3: 1-2軸最小中心距:A1_2min>1/2(Zmaxm+2m+D) 軸最小齒數和:Szmin>(Zmax+2+D/m) 3.5 確定各變速組此論傳動副齒數 (1)Sz100-124,中型機床Sz=70-100 (2)直齒圓柱齒輪Zmin18-24,m4 圖3.3 主傳動系統(tǒng)圖 (7) 齒輪齒數的確定。變速組內取模數相等,據設計要求Zmin≥18~24,齒數和Sz≤100~124,由表
14、4.1,根據各變速組公比,可得各傳動比和齒輪齒數,各齒輪齒數如表 (8) 3.1。 表3.1 齒輪齒數 傳動比 基本組 第一擴大組 第二擴大組 1:1 1:2 1:1.41 1:1 1:2.8 2:1 1:2 代號 Z Z Z Z Z Z Z Z’ Z5 Z5’ Z Z Z7 Z7’ 齒數 30 30 20 40 25 35 42 42 22 62 60 30 18 72 3.6 核算主軸轉速誤差 實際傳動比所造成的主軸轉速誤差,一般不應超過±10(-1)
15、%,即 〈10(-1)%=4.1% 第4章 設計部分的動力計算 4.1 帶傳動設計 輸出功率P=4kW,轉速n1=1440r/min,n2=800r/min 4.1.1計算設計功率Pd 表4.1 工作情況系數 工作機 原動機 ⅰ類 ⅱ類 一天工作時間/h 10~16 10~16 載荷 平穩(wěn) 液體攪拌機;離心式水泵;通風機和鼓風機();離心式壓縮機;輕型運輸機 1.0 1.1 1.2 1.1 1.2 1.3 載荷 變動小 帶式運輸機(運送砂石、谷物),通風機();發(fā)電機;旋轉式水泵;金屬切削機床;剪床;壓力機;印刷機;振動
16、篩 1.1 1.2 1.3 1.2 1.3 1.4 載荷 變動較大 螺旋式運輸機;斗式上料機;往復式水泵和壓縮機;鍛錘;磨粉機;鋸木機和木工機械;紡織機械 1.2 1.3 1.4 1.4 1.5 1.6 載荷 變動很大 破碎機(旋轉式、顎式等);球磨機;棒磨機;起重機;挖掘機;橡膠輥壓機 1.3 1.4 1.5 1.5 1.6 1.8 根據V帶的載荷平穩(wěn),兩班工作制(16小時),查《機械設計》P296表4, 取KA=1.1。即 4.1.2選擇帶型 普通V帶的帶型根據傳動的設計功率Pd和小帶輪的轉速n1按《機械設計》P297圖13-11選取
17、。 圖4.1 帶輪轉速圖 根據算出的Pd=4.4kW及小帶輪轉速n1=1440r/min ,查圖得:dd=80~100可知應選取A型V帶。 4.1.3確定帶輪的基準直徑并驗證帶速 由《機械設計》P298表13-7查得,小帶輪基準直徑為80~100mm 則取dd1=100mm> ddmin.=75 mm(dd1根據P295表13-4查得) 表4.2 V帶帶輪最小基準直徑 槽型 Y Z A B C D E 20 50 75 125 200 355 500 由《機械設計》P295表13-4查“V帶輪的基準直徑”,得=150mm ① 誤差驗算傳
18、動比: (為彈性滑動率)
誤差 符合要求
② 帶速
滿足5m/s 19、
1.10
1.05
1.00
0.92
0.98
0.95
0.89
0.86
0.82
0.78
0.73
0.68
表4.4 彎曲影響系數
帶型
Z
A
B
C
D
E
4.1.5確定帶的根數z
查機械設計手冊,取P1=0.35KW,△P1=0.03KW
由《機械設計》P299表13-8查得,取Ka=0.95
由《機械設計》P293表13-2查得,KL=1.16
則帶的根數
所以z取整數為3根。
4.1.6確定帶輪的結構和尺寸
根據V帶輪結構的選擇條件 20、,電機的主軸直徑為d=28mm;
由《機械設計》P293 ,“V帶輪的結構”判斷:當3d<dd1(90mm)<300mm,可采用H型孔板式或者P型輻板式帶輪,這次選擇H型孔板式作為小帶輪。
由于dd2>300mm,所以宜選用E型輪輻式帶輪。
總之,小帶輪選H型孔板式結構,大帶輪選擇E型輪輻式結構。
帶輪的材料:選用灰鑄鐵,HT200。
4.1.7確定帶的張緊裝置
選用結構簡單,調整方便的定期調整中心距的張緊裝置。
4.1.8計算壓軸力
由《機械設計》P303表13-12查得,A型帶的初拉力F0=117.83N,上面已得到=172.63o,z=3,則
對帶輪 21、的主要要求是質量小且分布均勻、工藝性好、與帶接觸的工作表面加工精度要高,以減少帶的磨損。轉速高時要進行動平衡,對于鑄造和焊接帶輪的內應力要小, 帶輪由輪緣、腹板(輪輻)和輪轂三部分組成。帶輪的外圈環(huán)形部分稱為輪緣,輪緣是帶輪的工作部分,用以安裝傳動帶,制有梯形輪槽。由于普通V帶兩側面間的夾角是40°,為了適應V帶在帶輪上彎曲時截面變形而使楔角減小,故規(guī)定普通V帶輪槽角 為32°、34°、36°、38°(按帶的型號及帶輪直徑確定),輪槽尺寸見表7-3。裝在軸上的筒形部分稱為輪轂,是帶輪與軸的聯(lián)接部分。中間部分稱為輪幅(腹板),用來聯(lián)接輪緣與輪轂成一整體。
表4.5 普通V帶輪的輪槽尺寸(摘自G 22、B/T13575.1-92)
項目
?
符號
槽型
Y
Z
A
B
C
D
E
基準寬度
b p
5.3
8.5
11.0
14.0
19.0
27.0
32.0
基準線上槽深
h amin
1.6
2.0
2.75
3.5
4.8
8.1
9.6
基準線下槽深
h fmin
4.7
7.0
8.7
10.8
14.3
19.9
23.4
槽間距
e
8 ± 0.3
12 ± 0.3
15 ± 0.3
19 ± 0. 23、4
25.5 ± 0.5
37 ± 0.6
44.5 ± 0.7
第一槽對稱面至端面的距離
f min
6
7
9
11.5
16
23
28
最小輪緣厚
5
5.5
6
7.5
10
12
15
帶輪寬
B
B =( z -1) e + 2 f ? z —輪槽數
外徑
d a
輪 槽 角
32°
對應的基準直徑 d d
≤ 60
-
-
-
-
-
-
34°
-
≤ 80
≤ 118
≤ 190
≤ 315
-
24、-
36°
60
-
-
-
-
≤ 475
≤ 600
38°
-
> 80
> 118
> 190
> 315
> 475
> 600
極限偏差
± 1
± 0.5
V帶輪按腹板(輪輻)結構的不同分為以下幾種型式:
(1) 實心帶輪:用于尺寸較小的帶輪(dd≤(2.5~3)d時),如圖7 -6a。
(2) 腹板帶輪:用于中小尺寸的帶輪(dd≤ 300mm 時),如圖7-6b。
(3) 孔板帶輪:用于尺寸較大的帶輪((dd-d)> 100 mm 時),如圖7 -6c 。
(4) 橢圓輪輻帶輪 25、:用于尺寸大的帶輪(dd> 500mm 時),如圖7-6d。
(a) (b) (c) (d)
圖4.2 帶輪結構類型圖
根據設計結果,可以得出結論:小帶輪選擇實心帶輪,如圖(a),大帶輪選擇腹板帶輪如圖(b)
4.2 計算轉速的計算
(1)主軸的計算轉速nj,由公式n=n得,主軸的計算轉速nj=99.514r/min,
取100 r/min。
(2). 傳動軸的計算轉速
軸3=400r/min 軸2=400 r/min,軸1=800r/min。
(2)確定各傳動軸的計算轉速。各計 26、算轉速入表4.6。
表4.6 各軸計算轉速
軸 號
Ⅰ 軸
Ⅱ 軸
Ⅲ 軸
計算轉速 r/min
800
400
400
(3) 確定齒輪副的計算轉速。齒輪Z裝在主軸上其中只有100r/min傳遞全功率,故Zj=100 r/min。
依次可以得出其余齒輪的計算轉速,如表4.7。
表4.7 齒輪副計算轉速
序號
Z
Z
Z
Z
Z
n
800
400
400
400
100
4.3 齒輪模數計算及驗算
(1)模數計算。一般同一變速組內的齒輪取同一模數,選取負 27、荷最重的小齒輪,按簡化的接觸疲勞強度公式進行計算,即mj=16338可得各組的模數,如表3-3所示。
根據和計算齒輪模數,根據其中較大值取相近的標準模數:
=16338=16338mm
——齒輪的最低轉速r/min;
——頂定的齒輪工作期限,中型機床推存:=15~24
——轉速變化系數;
——功率利用系數;
——材料強化系數。
——(壽命系數)的極值
齒輪等轉動件在接取和彎曲交邊載荷下的疲勞曲線指數m和基準順環(huán)次數C0
——工作情況系數。中等中級的主運動:
——動載荷系數;
——齒向載荷分布系數;
——齒形系數;
根據彎曲疲勞計算齒輪模數公式為: 28、
式中:N——計算齒輪轉動遞的額定功率N=?
——計算齒輪(小齒輪)的計算轉速r/min
——齒寬系數,
Z1——計算齒輪的齒數,一般取轉動中最小齒輪的齒數:
——大齒輪與小齒輪的齒數比,=;(+)用于外嚙合,(-)號用
于內嚙合: 命系數;
:工作期限 , =;
==3.49
==1.8
=0.84 =0.58
=0.90 =0.55 =0.72
=3.49 0.84 0.58 0.55=0.94
=1.80.8 29、4 0.90 0.72=0.99
時,取=,當<時,取=;
==0.85 =1.5;
=1.2 =1 =0.378
許用彎曲應力,接觸應力,()
=354 =1750
6級材料的直齒輪材料選;24熱處理S-C59
按接觸疲勞計算齒輪模數m
1-2軸由公式mj=16338可得mj=2.7mm,取m=3mm
2-3軸由公式mj=16338可得mj=2.4mm,取m=3mm
3-4軸由公式mj=16338可得mj=3.4mm,取m=3.5mm
由于一般同一 30、變速組內的齒輪盡量取同一模數,所以為了統(tǒng)一和方便如下取:
表4.8 模數
組號
基本組
第一擴大組
第二擴大組
模數 mm
3
3
3.5
(2) 基本組齒輪計算。
基本組齒輪幾何尺寸見下表
表4.9 基本組齒輪計算表
齒輪
Z1
Z1`
Z2
Z2`
Z3
Z3`
齒數
30
30
25
35
20
40
分度圓直徑
90
90
75
105
60
120
齒頂圓直徑
96
96
81
111
66
126
齒根圓直徑
82.5
82.5
67.5
97.5
52.5
31、
112.5
齒寬
24
24
24
24
24
24
按基本組最小齒輪計算。小齒輪用40Cr,調質處理,硬度241HB~246HB,平均取260HB,大齒輪用45鋼,調質處理,硬度229HB~246HB,平均取240HB。計算如下:
① 齒面接觸疲勞強度計算:
接觸應力驗算公式為
彎曲應力驗算公式為:
式中 N----傳遞的額定功率(kW),這里取N為電動機功率,N=5kW;
-----計算轉速( 32、r/min);
m-----初算的齒輪模數(mm), m=3(mm);
B----齒寬(mm);B=24(mm);
z----小齒輪齒數;z=20;
u----小齒輪齒數與大齒輪齒數之比;
-----壽命系數;
=
----工作期限系數;
T------齒輪工作期限,這里取T=15000h.;
-----齒輪的最低轉速(r/min), =500(r/min)
----基準循環(huán)次數,接觸載荷取=,彎曲載荷取=
33、 m----疲勞曲線指數,接觸載荷取m=3;彎曲載荷取m=6;
----轉速變化系數,查【5】2上,取=0.60
----功率利用系數,查【5】2上,取=0.78
-----材料強化系數,查【5】2上, =0.60
-----工作狀況系數,取=1.1
-----動載荷系數,查【5】2上,取=1
------齒向載荷分布系數,查【5】2上,=1
Y------齒形系數,查【5】2上,Y=0.386;
----許用接觸應力(MPa),查【4】,表4-7,取=650 Mpa;
-- 34、-許用彎曲應力(MPa),查【4】,表4-7,取=275 Mpa;
根據上述公式,可求得及查取值可求得:
=635 Mpa
=78 Mpa
(3)第一擴大組齒輪計算。
擴大組齒輪幾何尺寸見下表
4.10 第一擴大組齒輪幾何尺寸
齒輪
Z4
Z4`
Z5
Z5`
齒數
42
42
22
62
分度圓直徑
126
126
66
186
齒頂圓直徑
132
132
72
192
齒根圓直徑
118.5
118.5
58.5
178.5
齒寬
24
24
24
24
(4)第二擴大組齒輪計算。
擴 35、大組齒輪幾何尺寸見下表
4.11第二擴大組齒輪幾何尺寸
齒輪
Z6
Z6`
Z7
Z7`
齒數
60
30
18
72
分度圓直徑
210
105
63
252
齒頂圓直徑
217
112
70
259
齒根圓直徑
201.25
96.25
54.5
243.5
齒寬
24
24
24
24
按擴大組最小齒輪計算。小齒輪用40Cr,調質處理,硬度241HB~246HB,平均取260HB,大齒輪用45鋼,調質處理,硬度229HB~246HB,平均取240HB。
同理根據基本組的計算,
查文獻【6】,可得 =0.62, 36、 =0.77,=0.60,=1.1,
=1,=1,m=3.5,=355;
可求得:
=619 Mpa
=135Mpa
4.4 傳動軸的計算設計校核
由【5】式6,傳動軸直徑按扭轉剛度用下式計算:
d=1.64(mm)
或 d=91(mm)
式中 d---傳動軸直徑(mm)
Tn---該軸傳遞的額定扭矩(N*mm) T=9550000;
N----該軸傳遞的功率(KW)
----該軸的計算轉速
---該軸每米長度的允許扭轉角,=。
各軸的功率:
37、
取各傳動件效率如下:
帶傳動效率:
軸承傳動效率:
齒輪傳動效率:
則有各傳動軸傳遞功率計算如下:
計算各軸的輸入轉矩:
由機械原理可知轉矩計算公式為:
以上計算數據總結如下:
傳動軸
電機軸
Ⅰ
Ⅱ
Ⅲ
Ⅳ
傳動功率kw
4
3.8
3.65
3.51
3.37
傳遞轉矩
26.53
51.13
98.21
267.84
357.23
傳動軸的直徑估算:
當軸上有鍵槽時,d值應相應增大4~5%;當軸為花鍵軸時,可將估算的d值減小7%為花鍵軸的小徑;空心軸時,d需乘以計算系數b,b值見《機械設計手冊》表7-12。 38、軸有鍵槽,軸和軸因為要安裝滑移齒輪所以都采用花鍵軸,Ⅳ有鍵槽并且軸Ⅳ為空心軸.根據以上原則各軸的直徑取值:
a.Ⅰ軸的設計計算:
(1)選擇軸的材料
由文獻[1]中的表11-1和表11-3選用45號鋼,調質處理,硬度,,,。
(2)按扭矩初算軸徑
根據文獻[1]中式(11-2),并查表11-2,取C=115,則
考慮有鍵槽和軸承,軸加大5%:
所以取d=22mm
b. Ⅱ軸的設計計算:
(1)選擇軸的材料
由文獻[1]中的表11-1和表11-3選用45號鋼,調質處理,硬度,,,。
(2)按扭矩初算軸徑
根據文獻[1 39、]中式(11-2),并查表11-2,取C=115,則
考慮有鍵槽,軸加大5%:
所以取最小d=30mm
c. Ⅲ軸的設計計算:
(1)選擇軸的材料
由文獻[1]中的表11-1和表11-3選用45號鋼,調質處理,硬度,,,。
(2)按扭矩初算軸徑
根據文獻[1]中式(11-2),并查表11-2,取C=115,則
有鍵槽和軸承,軸加大5%:; 取d=38mm.
根據以上計算各軸的直徑取值如下表示:
軸
軸
軸
軸
最小軸徑值
22
30
38
(7)Ⅱ軸的結構設計及校核計算:
(1)確定軸各段直 40、徑和長度:
圖4 II軸尺寸圖
段:安裝圓錐滾子軸承,
段:安裝兩個個雙聯(lián)齒輪塊,同時利用軸肩定位軸承,由軸肩計算公式 所以??;
段:安裝圓錐滾子軸承,
(2)軸的強度校核:
軸的校核主要校核危險截面已知Ⅱ軸齒輪6、齒輪8數據如下:
求圓周力:;徑向力;
軸承支反力:
齒輪6對軸的支反力:
齒輪8對軸的支反力:
垂直面的彎矩:
由以上計算可知危險截面在軸的右端齒輪6處,,跨距282mm;直徑為48mm段;
軸承的支反力:
水平面彎矩:
合成彎矩:
已知轉矩為:轉矩產生的剪力按脈動循環(huán)變化,取截面C處的當量彎矩:
41、
校核危險截面C的強度
則有該軸強度滿足要求。
同理可知,按照此方法校核其他傳動軸,經檢驗,傳動軸設計均符合要求。
圖5 轉矩圖
4. 主軸設計計算及校核
主軸上的結構尺寸雖然很多,但起決定作用的尺寸是:外徑D、孔徑d、懸伸量a和支撐跨距L。
圖6 主軸設計圖
1.主軸前后軸頸直徑的選擇:
主軸的外徑尺寸,關鍵是主軸前軸頸直徑。一般按照機床類型、主軸傳遞的功率或最大加工直徑,參考表3-7選取。最大回轉直徑400mm銑床,P=4KW查《機械制造裝備設計》表3-7,前軸頸應,初選,后軸頸取。
2.主軸內孔直徑的確定:
很多機床的主軸是空心的,為了不過多的削主 42、軸剛度,一般應保證d/D <0.7。
??;經計算選取內孔直徑d=40mm。
3.主軸前端伸長量a:
減小主軸前端伸長量對提高提高主軸組件的旋轉精度、剛度、和抗震性有顯著效果,因此在主軸設計時,在滿足結構的前提下,應最大限度的縮短主軸懸伸量a。根據結構,定懸伸長度;
取a=100mm。
4.支撐跨距L:
最佳跨距;取值
合理跨距;取值。
5.主軸剛度校驗:
機床在切削加工過程中,主軸的負荷較重,而允許的變形由很小,因此決定主軸結構尺寸的主要因素是它的變形大小。對于普通機床的主軸,一般只進行剛度驗算。通常能滿足剛度要求的主軸,也能滿足強度要求。只有重載荷的機床的主軸才進行強 43、度驗算。對于高速主軸,還要進行臨界轉速的驗算,以免發(fā)生共振。
一彎曲變形為主的機床主軸(如銑床、銑床),需要進行彎曲剛度驗算,以扭轉變形為主的機床(如鉆床),需要進行扭轉剛度驗算。當前主軸組件剛度驗算方法較多,沒能統(tǒng)一,還屬近似計算,剛度的允許值也未做規(guī)定??紤]動態(tài)因素的計算方法,如根據部產生切削顫動條件來確定主軸組件剛度,計算較為復雜?,F在仍多用靜態(tài)計算法,計算簡單,也較適用。
主軸彎曲剛度的驗算;驗算內容有兩項:其一,驗算主軸前支撐處的變形轉角,是否滿足軸承正常工作的要求;其二,驗算主軸懸伸端處的變形位移y,是否滿足加工精度的要求。對于粗加工機床需要驗算、y值;對于精加工或半精加工機 44、床值需驗算y值;對于可進行粗加工由能進行半精的機床(如臥式銑床),需要驗算值,同時還需要按不同加工條件驗算y值。
支撐主軸組件的剛度驗算,可按兩支撐結構近似計算。如前后支撐為緊支撐、中間支撐位松支撐,可舍棄中間支撐不計(因軸承間隙較大,主要起阻尼作用,對剛度影響較?。?;若前中支撐位緊支撐、后支撐為松支撐時,可將前中支距當做兩支撐的之距計算,中后支撐段主軸不計。
機床粗加工時,主軸的變形最大,主軸前支撐處的轉角有可能超過允許值,故應驗算此處的轉角。因主軸中(后)支撐的變形一般較小,故可不必計算。
5.2 零件驗算
5.2.1 主軸剛度
5.2.1.1 主軸支撐跨距的確定
前端懸伸量: 45、主軸前端的懸伸長度,即從主軸外側前支撐中點(滾錐軸承及向心推力軸承則是接觸角法線與軸線的交點處)到主軸前端的距離。這里選定。
一般最佳跨距,考慮到結構以及支承剛度會因磨損而不斷降低,應取跨距比最佳支承跨距 大一些,一般是的倍,再綜合考慮結構的需要,本設計取。
5.2.1.2 最大切削合力P的確定
最大圓周切削力須按主軸輸出全功率和最大扭矩確定
(4-8)
其中:
——電動機額定功率(),;
——主傳動系統(tǒng)的總效率,,為各傳動副、軸承的效率,總效率。由前文計算結果, 。取;
——主軸的計算轉速,由前文計算結果,主軸的計算轉速為;
——計算直徑,對于臥式銑床,為最大端銑刀計算 46、直徑,對于工作臺寬度為250mm的臥式銑床,其端銑刀的計算直徑及寬度分別為,。
可以得到,
驗算主軸組件剛度時,須求出作用在垂直于主軸軸線的平面內的最大切削合力。對于臥式升降臺銑床的銑削力,一般按端銑計算。
不妨假設本銑床進給系統(tǒng)的末端傳動副有消隙機構,應采用不對稱順銑,則各切削分力、、同的比值可大致認為
;
;
。
則,,即與水平面成角,在水平面的投影與成角。
5.2.1.3 切削力作用點的確定
設切削力的作用點到主軸前支撐的距離為
(4-9)
其中:
——主軸前端的懸伸長度,;
——對于普通升降臺銑床。
可以得到,
5.2. 47、1.4 齒輪驅動力Q的確定
齒輪傳動軸受輸入扭矩的齒輪驅動力的作用而產生彎曲變形,當齒輪為直齒圓柱齒輪時,其嚙合角,齒面摩
擦角時,其彎曲載荷
(4-10)
其中:
——齒輪傳遞的全功率(),?。?
——該齒輪的模數、齒數;
——該傳動軸的計算工況轉速。
可以得到,
5.2.1.5 變形量允許值的確定
變形量允許值:對普通機床前端撓度的允許值,目前廣泛 使用的經驗數據
(4-11)
其中:
——主軸兩支撐間的距離,。
可以得到,
5.2.1.6 主軸組件的靜剛度驗算
圖 4-4 主軸組件縱向視圖力的分布
圖 4-5 主軸組件橫向視 48、圖力的分布
選定如圖的直角坐標系,求各力同時作用下,前后軸承負荷的大小及其方向角,并判定象限。建立方程組計算主軸前后支撐處的支反力。
的方向:
的方向:
在點的水平投影:
在點的垂直投影:
可以得到,
,,
,,
即,方向與軸正方向夾角。
,方向與軸正方向夾角。
前后軸承的負荷大小與支反力大小相同,方向相反。故前后軸承的負荷為:
,方向與軸正方向夾角。
,方向與軸正方向夾角。
按軸承的合成負荷,計算軸承的彈性位移。
滾動軸承的徑向剛度是支承剛度的主要部分,支承剛度還包括軸承環(huán)與軸頸及箱體孔的配合表面間的接觸剛度。預緊的滾動軸承可以 49、提高剛度。
計算時可以忽略軸承環(huán)與軸頸以及箱體孔之間的接觸剛度。僅以滾動軸承的游隙為零時,承受徑向載荷來計算軸承的徑向剛度,圓錐滾子軸承的徑向剛度
(4-12)
其中:
——滾動體列數;
——每列中滾動體數;
——滾子有效長度;
——軸承的徑向負荷;
——軸承的接觸角。
可以得到,
前后支承軸承的彈性位移,
分別計算各作用力對彈性主軸前端點產生的撓度。
由簡單載荷下簡支軸的變形公式,軸自身變形引起的軸點撓度公式
(4-13)
(4-14)
其中:
——載荷力;
——材料的彈性模量,鋼的;
——分別為軸的的抗彎慣 50、性矩
(4-15)
可以得到,
可以得到,
共同作用下,點的撓度分解
將軸承的彈性位移分解為直角坐標分量,并計算它對主軸前端點產生的相應撓度值。
點:
點:
在水平面(方向)點產生的撓度:
在垂直面(方向)點產生的撓度:
可以得到,
將主軸組件前端c 點在直角坐標上的各分量進行代數疊加后,再合成綜合撓度值并計算其方向角。
分量:
合成:
方向角:
由綜合撓度,可見,故主軸通過校核。
5.2.2 傳動軸剛度
5.2.2.1 齒輪驅動力Q的確定
齒輪傳動軸同時受輸入扭矩 51、的齒輪驅動力和輸出扭矩的齒輪驅動阻力的作用而產生彎曲變形,當齒輪為直齒圓柱齒輪,其嚙合角,齒面摩擦角時,其彎曲載荷
(4-16)
其中:
——該齒輪傳遞的全功率,??;
——該齒輪的模數和齒數;
——該傳動軸的計算工況轉速;
——該軸輸入扭矩的齒輪計算轉速;
——該軸輸出扭矩的齒輪計算轉速。
由于軸Ⅲ上有三種不同的驅動力和三種不同的驅動阻力,故驅動力具體的計算結果在下文討論。
5.2.2.2 變形量允許值的確定
齒輪傳動軸的抗彎剛度驗算,包括軸的最大撓度,滾動軸承處及齒輪安裝處的傾角驗算。其值均應小于允許變形量及,允 52、許變形量可由參考文獻[4]查得。
由參考文獻[3]知,對于傳動軸Ⅱ,僅需要進行剛度計算,無須進行強度驗算。
5.2.2.3 主軸組件的撓度驗算
圖5-4 傳動軸II載荷分布
其中是變速組1的驅動力,且3個驅動力不能同時作用;是變速組2的驅動阻力,且3個驅動阻力不能同時作用。
可以得到
對于輸出驅動阻力,由于各種情況轉速不定,故應在選定校核用軸Ⅲ速度以后計算。
為了計算上的簡便,可以近似地以該軸的中點撓度代替最大撓度,其最大誤差不超過3%。
由參考文獻[4],若兩支承的齒輪傳動軸為實心的圓形鋼軸,忽略其支承變形,在單位彎曲載荷作用下,其中點撓度
(4 53、-17)
其中:
——兩支承間的跨距,;
——該軸的平均直徑,;
(4-18)
——齒輪的工作位置至較近支撐點的距離;
——輸入扭矩的齒輪在軸的中點引起的撓度;
——輸出扭矩的齒輪在軸的中點引起的撓度;
其余各符號定義與前文一致。
可以得到,
;
;
。
可以得到
故引起的中點撓度最大,在計算合成撓度時使用,進行計算。此時軸Ⅲ轉速為。
可以得到,
可以得到,
故引起的中點撓度最大,在計算合成撓度時使用,進行計算。
由參考文獻[4],中點的合成撓度
(4 54、-19)
其中:
——被驗算軸的中點合成撓度;
——在橫截面上,被驗算的軸與其前、后傳動軸連心線的夾角;
——驅動力和阻力在橫截面上,兩向量合成時的夾角。
(4-20)
可以得到
可以得到
由綜合撓度,可見,滿足要求。
由參考文獻[4],傳動軸在支承點A、B處的傾角、
(4-21)
可以得到,
可見,滿足要求,故不用計算傳動軸在齒輪處的傾角。
綜上,傳動軸Ⅱ通過校核。
5.2.3 齒輪疲勞強度
驗算變速箱中齒輪強度時,選擇相同模數中承受載荷最大的及齒數最小的齒輪進行接觸應力和彎曲應力計算。一般對高速轉動的齒輪驗算齒面接觸應力,對低速轉動的 55、齒輪驗算齒根彎曲應力。對硬齒面軟芯的滲淬火齒輪,一定要驗算彎曲應力。因而此處僅驗算與 這對齒輪。
由參考文獻[4],齒面接觸應力
(4-22)
齒根彎曲應力
(4-23)
其中:
——初算得到的齒輪模數,;
——傳遞的額定功率,;
——齒輪的計算轉速,
;
——大齒輪齒數與小齒輪齒數之比,,外嚙合取“+”號,內嚙合取“-”號;
——小齒輪的齒數;
——齒寬;
——許用接觸應力,由參考文獻[5]表13-16,齒輪材料選用45鋼,高頻淬火,可得;
——許用彎曲應力,;
——壽命系數;
(4-24)
——工作期限系數;
(4-25)
— 56、—齒輪在機床工作期限內的總工作時間,對于中型機床的齒輪,,取,統(tǒng)一變速組內的齒輪總工作時間可近似地認為,為該變速組的傳動副數,取,則;
——齒輪的最低轉速,?。?
——基準循環(huán)次數,對于鋼和鑄鐵件,接觸載荷取,彎曲載荷??;
——疲勞曲線指數,接觸載荷取,彎曲載荷對正火、調質及整體淬硬件取,對表面淬硬(高頻、滲碳、氮化等)件??;
可以得到,
;
——功率利用系數,?。?
——轉速變化系數,取;
——材料強化系數,取;
可以得到,
,
;
——齒向載荷分布系數,取;
——動載荷系數,??;
——工作狀況系數,考慮載荷沖擊的影響,主運動(中等沖擊)取;
——齒形 57、系數,取。
可以得到,
可見,,。
綜上,齒輪通過校核。
6.軸承的選用及校核
1】各傳動軸軸承選取的型號:
主軸
前支承: NN3018K 型 圓錐孔雙列圓柱滾子軸承:9014037;
后支撐:352212 雙列圓錐滾子軸承:6011066;
Ⅰ軸
帶輪處:308 深溝球軸承軸409023;
軸與箱體處:305 GB276-89:256217;
齒輪:7305C 角接觸軸承GB292-83:255215;
③ Ⅱ軸
前、后支承:7306E 圓錐滾子軸承GBT297-84 :307219;
④ Ⅲ軸
前、后支承:7308E 58、 圓錐滾子軸承GBT297-84 :409023;
2】各傳動軸軸承的校核:
假定:按兩班制工作,工作期限10年,每年按300天計,T=48000h。
依據《機械設計》軸承校核公式如下:
Ⅰ軸軸承校核:
已知選用軸承為:深溝球軸承 305 GB276-89:256217;
基本額定動載荷;由于該軸的轉速為定值710r/min;依據設計要求應對Ⅰ軸末端軸承進行校核。
最小齒輪直徑;
Ⅰ軸傳遞轉矩
齒輪受到的切向力
齒輪受到的軸向力
齒輪受到的徑向力
因此軸承當量動載荷
因此該軸承符合要求,選取合適。同理可校核其他傳動軸軸承,經校核各軸軸承選取均合適。
7. 59、鍵的選用及校核
<1>Ⅲ軸上的鍵的選用和強度校核:
Ⅲ軸與齒輪的聯(lián)接采用普通平鍵聯(lián)接,軸徑d=48mm;齒輪快厚度L=78.5mm;傳遞扭矩;選用A型平鍵,初選鍵型號為,。查《機械設計》表7-9得。由《機械設計》式(7-14)和式(7-15)得
由上式計算可知擠壓強度滿足。
由上式計算可知抗剪切強度滿足。
<2>主軸上的鍵的選用和強度校核
主軸與齒輪的聯(lián)接采用普通平鍵聯(lián)接,軸徑d=80mm;齒輪快厚度L=95mm;傳遞扭矩;選用A型平鍵,由于主軸空心所以選擇鍵,。查《機械設計》表7-9得。由《機械設計》式(7-14)和式(7-15)得
由上式計算可知擠壓強度滿足。
60、
由上式計算可知抗剪切強度滿足。
第5章 主軸箱結構設計及說明
5.1 結構設計的內容、技術要求和方案
設計主軸變速箱的結構包括傳動件(傳動軸、軸承、帶輪、齒輪、離合器和制動器等)、主軸組件、操縱機構、潤滑密封系統(tǒng)和箱體及其聯(lián)結件的結構設計與布置,用一張展開圖和若干張橫截面圖表示。課程設計由于時間的限制,一0般只畫展開圖。
主軸變速箱是機床的重要部件。設計時除考慮一般機械傳動的有關要求外,著重考慮以下幾個方面的問題。
精度方面的要求,剛度和抗震性的要求,傳動效率要求,主軸前軸承處溫度和溫升的控制,結構工藝性,操作方便、安全、可靠原則,遵循標準化和通用化的原則。
主軸變速箱結構設計 61、時整個機床設計的重點,由于結構復雜,設計中不可避免要經過反復思考和多次修改。在正式畫圖前應該先畫草圖。目的是:
1 布置傳動件及選擇結構方案。
2 檢驗傳動設計的結果中有無干涉、碰撞或其他不合理的情況,以便及時改正。
3 確定傳動軸的支承跨距、齒輪在軸上的位置以及各軸的相對位置,以確
定各軸的受力點和受力方向,為軸和軸承的驗算提供必要的數據。
5.2 展開圖及其布置
展開圖就是按照傳動軸傳遞運動的先后順序,假想將各軸沿其軸線剖開并將這些剖切面平整展開在同一個平面上。
I軸上裝的摩擦離合器和變速齒輪。有兩種布置方案,一是將兩級變速齒輪和離合器做成一體。齒輪的直徑受到離合器內徑的約束 62、,齒根圓的直徑必須大于離合器的外徑,負責齒輪無法加工。這樣軸的間距加大。另一種布置方案是離合器的左右部分分別裝在同軸線的軸上,左邊部分接通,得到一級反向轉動,右邊接通得到三級反向轉動。這種齒輪尺寸小但軸向尺寸大。我們采用第一種方案,通過空心軸中的拉桿來操縱離合器的結構。
總布置時需要考慮制動器的位置。制動器可以布置在背輪軸上也可以放在其他軸上。制動器不要放在轉速太低軸上,以免制動扭矩太大,是制動尺寸增大。
齒輪在軸上布置很重要,關系到變速箱的軸向尺寸,減少軸向尺寸有利于提高剛度和減小體積。
結束語
1、本次課程設計是針對專業(yè)課程基礎知識的一次綜合性應用設計,設計過程應用了《機械制圖 63、》、《機械原理》、《工程力學》等。
2、本次課程設計充分應用了以前所學習的知識,并應用這些知識來分析和解決實際問題。
3、本次課程設計進一步掌握了一般設計的設計思路和設計切入點,同時對機械部件的傳動設計和動力計算也提高了應用各種資料和實際動手的能力。
4、本次課程設計進一步規(guī)范了制圖要求,掌握了機械設計的基本技能。
5、本次課程設計由于學習知識面的狹窄和對一些概念的理解不夠深刻,以及缺乏實際設計經驗,使得設計黨中出現了許多不妥和錯誤之處,誠請老師給予指正和教導。
參考文獻
【1】、段鐵群 主編 《機械系統(tǒng)設計》 科學出版社 第一版,2011
【2】、于惠力 64、 主編 《機械設計》 科學出版社 第一版,2008
【3】、戴 曙 主編 《金屬切削機床設計》 機械工業(yè)出版社,2010
【4】、戴 曙 主編 《金屬切削機床》 機械工業(yè)出版社 第一版,2011
【4】、趙九江 主編 《材料力學》 哈爾濱工業(yè)大學出版社 第一版,2006
【6】、鄭文經 主編 《機械原理》 高等教育出版社 第七版,2005
【7】、于惠力 主編 《機械設計課程設計》 科學出版社 ,2009
英文原文
PLC technique discussion and futu 65、re development
Along with the development of the ages, the technique that is nowadays is also gradually perfect, the competition plays more strong; the operation that list depends the artificial has already can't satisfied with the current manufacturing industry foreground, also can't guarantee the 66、 request of the higher quantity and high new the image of the technique business enterprise.
The people see in produce practice, automate brought the tremendous convenience and the product quantities for people up of assurance, also eased the personnel's labor strength, reduce the establishment on the personnel. The target control of the hard realization in many complicated production lines, whole and excellent turn, the best decision etc., well-trained operation work, technical personnel or ex
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。