高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 平面解析幾何 9.3 圓的方程課件 理.ppt
《高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 平面解析幾何 9.3 圓的方程課件 理.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 平面解析幾何 9.3 圓的方程課件 理.ppt(81頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第九章平面解析幾何 9 3圓的方程 內(nèi)容索引 基礎(chǔ)知識(shí)自主學(xué)習(xí) 題型分類深度剖析 思想與方法系列 思想方法感悟提高 練出高分 基礎(chǔ)知識(shí)自主學(xué)習(xí) 1 圓的定義在平面內(nèi) 到的距離等于的點(diǎn)的叫圓 2 確定一個(gè)圓最基本的要素是和 3 圓的標(biāo)準(zhǔn)方程 x a 2 y b 2 r2 r 0 其中為圓心 為半徑 4 圓的一般方程x2 y2 Dx Ey F 0表示圓的充要條件是 其中圓心為 半徑r 定長(zhǎng) 集合 定點(diǎn) 圓心 半徑 a b r D2 E2 4F 0 知識(shí)梳理 1 答案 5 確定圓的方程的方法和步驟確定圓的方程主要方法是待定系數(shù)法 大致步驟為 1 根據(jù)題意 選擇標(biāo)準(zhǔn)方程或一般方程 2 根據(jù)條件列出關(guān)于a b r或D E F的方程組 3 解出a b r或D E F代入標(biāo)準(zhǔn)方程或一般方程 6 點(diǎn)與圓的位置關(guān)系點(diǎn)和圓的位置關(guān)系有三種 圓的標(biāo)準(zhǔn)方程 x a 2 y b 2 r2 點(diǎn)M x0 y0 1 點(diǎn)在圓上 2 點(diǎn)在圓外 3 點(diǎn)在圓內(nèi) x0 a 2 y0 b 2 r2 x0 a 2 y0 b 2 r2 x0 a 2 y0 b 2 r2 答案 判斷下面結(jié)論是否正確 請(qǐng)?jiān)诶ㄌ?hào)中打 或 1 確定圓的幾何要素是圓心與半徑 2 已知點(diǎn)A x1 y1 B x2 y2 則以AB為直徑的圓的方程是 x x1 x x2 y y1 y y2 0 3 方程Ax2 Bxy Cy2 Dx Ey F 0表示圓的充要條件是A C 0 B 0 D2 E2 4AF 0 4 方程x2 2ax y2 0一定表示圓 答案 思考辨析 答案 1 教材改編 x2 y2 4x 6y 0的圓心坐標(biāo)是 圓x2 y2 4x 6y 0的圓心為 2 3 2 3 考點(diǎn)自測(cè) 2 解析答案 1 2 3 4 5 2 方程x2 y2 ax 2ay 2a2 a 1 0表示圓 則a的取值范圍是 解析由題意知a2 4a2 4 2a2 a 1 0 解析答案 1 2 3 4 5 3 2015 北京改編 圓心為 1 1 且過原點(diǎn)的圓的方程是 圓的方程為 x 1 2 y 1 2 2 x 1 2 y 1 2 2 解析答案 1 2 3 4 5 4 教材改編 圓C的圓心在x軸上 并且過點(diǎn)A 1 1 和B 1 3 則圓C的方程為 解析設(shè)圓心坐標(biāo)為C a 0 點(diǎn)A 1 1 和B 1 3 在圓C上 CA CB 解得a 2 圓心為C 2 0 圓C的方程為 x 2 2 y2 10 x 2 2 y2 10 解析答案 1 2 3 4 5 5 2015 湖北 如圖 已知圓C與x軸相切于點(diǎn)T 1 0 與y軸正半軸交于兩點(diǎn)A B B在A的上方 且AB 2 1 圓C的標(biāo)準(zhǔn)方程為 解析由題意 設(shè)圓心C 1 r r為圓C的半徑 解析答案 1 2 3 4 5 2 圓C在點(diǎn)B處的切線在x軸上的截距為 解析答案 1 2 3 4 5 解析答案 1 2 3 4 5 1 2 3 4 5 返回 題型分類深度剖析 例1根據(jù)下列條件 求圓的方程 1 經(jīng)過P 2 4 Q 3 1 兩點(diǎn) 并且在x軸上截得的弦長(zhǎng)等于6 題型一求圓的方程 解析答案 解設(shè)圓的方程為x2 y2 Dx Ey F 0 又令y 0 得x2 Dx F 0 設(shè)x1 x2是方程 的兩根 由 x1 x2 6有D2 4F 36 由 解得D 2 E 4 F 8 或D 6 E 8 F 0 故所求圓的方程為x2 y2 2x 4y 8 0 或x2 y2 6x 8y 0 2 圓心在直線y 4x上 且與直線l x y 1 0相切于點(diǎn)P 3 2 解析答案 思維升華 解方法一如圖 設(shè)圓心 x0 4x0 故圓的方程為 x 1 2 y 4 2 8 方法二設(shè)所求方程為 x x0 2 y y0 2 r2 解析答案 思維升華 因此所求圓的方程為 x 1 2 y 4 2 8 思維升華 思維升華 1 直接法 根據(jù)圓的幾何性質(zhì) 直接求出圓心坐標(biāo)和半徑 進(jìn)而寫出方程 2 待定系數(shù)法 若已知條件與圓心 a b 和半徑r有關(guān) 則設(shè)圓的標(biāo)準(zhǔn)方程依據(jù)已知條件列出關(guān)于a b r的方程組 從而求出a b r的值 若已知條件沒有明確給出圓心或半徑 則選擇圓的一般方程 依據(jù)已知條件列出關(guān)于D E F的方程組 進(jìn)而求出D E F的值 1 2014 陜西 若圓C的半徑為1 其圓心與點(diǎn) 1 0 關(guān)于直線y x對(duì)稱 則圓C的標(biāo)準(zhǔn)方程為 解析由題意知圓C的圓心為 0 1 半徑為1 所以圓C的標(biāo)準(zhǔn)方程為x2 y 1 2 1 x2 y 1 2 1 跟蹤訓(xùn)練1 解析答案 2 過點(diǎn)A 4 1 的圓C與直線x y 1 0相切于點(diǎn)B 2 1 則圓C的方程為 解析由已知kAB 0 所以AB的中垂線方程為x 3 過B點(diǎn)且垂直于直線x y 1 0的直線方程為y 1 x 2 即x y 3 0 所以圓心坐標(biāo)為 3 0 所以圓C的方程為 x 3 2 y2 2 x 3 2 y2 2 解析答案 命題點(diǎn)1斜率型最值問題 題型二與圓有關(guān)的最值問題 解析答案 則圓心 2 0 到直線y kx的距離為半徑時(shí)直線與圓相切 斜率取得最大 最小值 解析答案 命題點(diǎn)2截距型最值問題 例3在例2條件下 求y x的最小值和最大值 解設(shè)y x b 則y x b 僅當(dāng)直線y x b與圓切于第四象限時(shí) 截距b取最小值 解析答案 命題點(diǎn)3距離型最值問題 例4在例2條件下 求x2 y2的最大值和最小值 解x2 y2表示圓上的一點(diǎn)與原點(diǎn)距離的平方 由平面幾何知識(shí)知 在原點(diǎn)和圓心連線與圓的兩個(gè)交點(diǎn)處取得最大值和最小值 如圖 解析答案 思維升華 思維升華 與圓有關(guān)的最值問題的常見類型及解題策略 1 與圓有關(guān)的長(zhǎng)度或距離的最值問題的解法 一般根據(jù)長(zhǎng)度或距離的幾何意義 利用圓的幾何性質(zhì)數(shù)形結(jié)合求解 2 與圓上點(diǎn) x y 有關(guān)代數(shù)式的最值的常見類型及解法 形如u 型的最值問題 可轉(zhuǎn)化為過點(diǎn) a b 和點(diǎn) x y 的直線的斜率的最值問題 形如t ax by型的最值問題 可轉(zhuǎn)化為動(dòng)直線的截距的最值問題 形如 x a 2 y b 2型的最值問題 可轉(zhuǎn)化為動(dòng)點(diǎn)到定點(diǎn) a b 的距離平方的最值問題 1 設(shè)P是圓 x 3 2 y 1 2 4上的動(dòng)點(diǎn) Q是直線x 3上的動(dòng)點(diǎn) 則PQ的最小值為 解析PQ的最小值為圓心到直線的距離減去半徑 因?yàn)閳A的圓心為 3 1 半徑為2 所以PQ的最小值d 3 3 2 4 4 跟蹤訓(xùn)練2 解析答案 2 已知M為圓C x2 y2 4x 14y 45 0上任意一點(diǎn) 且點(diǎn)Q 2 3 求MQ的最大值和最小值 解由圓C x2 y2 4x 14y 45 0 可得 x 2 2 y 7 2 8 所以圓心C的坐標(biāo)為 2 7 解析答案 設(shè)直線MQ的方程為y 3 k x 2 解析答案 例5設(shè)定點(diǎn)M 3 4 動(dòng)點(diǎn)N在圓x2 y2 4上運(yùn)動(dòng) 以O(shè)M ON為兩邊作平行四邊形MONP 求點(diǎn)P的軌跡 題型三與圓有關(guān)的軌跡問題 解析答案 思維升華 解如圖所示 設(shè)P x y N x0 y0 解析答案 又N x 3 y 4 在圓上 故 x 3 2 y 4 2 4 因此所求軌跡為圓 x 3 2 y 4 2 4 思維升華 思維升華 求與圓有關(guān)的軌跡問題時(shí) 根據(jù)題設(shè)條件的不同常采用以下方法 直接法 直接根據(jù)題目提供的條件列出方程 定義法 根據(jù)圓 直線等定義列方程 幾何法 利用圓的幾何性質(zhì)列方程 代入法 找到要求點(diǎn)與已知點(diǎn)的關(guān)系 代入已知點(diǎn)滿足的關(guān)系式等 已知圓x2 y2 4上一定點(diǎn)A 2 0 B 1 1 為圓內(nèi)一點(diǎn) P Q為圓上的動(dòng)點(diǎn) 1 求線段AP中點(diǎn)的軌跡方程 解設(shè)AP的中點(diǎn)為M x y 由中點(diǎn)坐標(biāo)公式可知 P點(diǎn)坐標(biāo)為 2x 2 2y 因?yàn)镻點(diǎn)在圓x2 y2 4上 所以 2x 2 2 2y 2 4 故線段AP中點(diǎn)的軌跡方程為 x 1 2 y2 1 跟蹤訓(xùn)練3 解析答案 2 若 PBQ 90 求線段PQ中點(diǎn)的軌跡方程 解設(shè)PQ的中點(diǎn)為N x y 連結(jié)BN 在Rt PBQ中 PN BN 設(shè)O為坐標(biāo)原點(diǎn) 連結(jié)ON 則ON PQ 所以O(shè)P2 ON2 PN2 ON2 BN2 所以x2 y2 x 1 2 y 1 2 4 故線段PQ中點(diǎn)的軌跡方程為x2 y2 x y 1 0 解析答案 返回 思想與方法系列 典例在平面直角坐標(biāo)系xOy中 曲線y x2 6x 1與坐標(biāo)軸的交點(diǎn)都在圓C上 求圓C的方程 思維點(diǎn)撥本題可采用兩種方法解答 即代數(shù)法和幾何法 19 利用幾何性質(zhì)巧設(shè)方程求半徑 思想與方法系列 溫馨提醒 巧妙解法 解析答案 思維點(diǎn)撥 返回 規(guī)范解答解一般解法 代數(shù)法 曲線y x2 6x 1與y軸的交點(diǎn)為 0 1 故圓的方程是x2 y2 6x 2y 1 0 設(shè)圓的方程是x2 y2 Dx Ey F 0 D2 E2 4F 0 溫馨提醒 巧妙解法 所以圓C的方程為 x 3 2 y 1 2 9 溫馨提醒 返回 1 一般解法 代數(shù)法 可以求出曲線y x2 6x 1與坐標(biāo)軸的三個(gè)交點(diǎn) 設(shè)圓的方程為一般式 代入點(diǎn)的坐標(biāo)求解析式 2 巧妙解法 幾何法 利用圓的性質(zhì) 知道圓心一定在圓上兩點(diǎn)連線的垂直平分線上 從而設(shè)圓的方程為標(biāo)準(zhǔn)式 簡(jiǎn)化計(jì)算 顯然幾何法比代數(shù)法的計(jì)算量小 因此平時(shí)訓(xùn)練多采用幾何法解題 溫馨提醒 思想方法感悟提高 1 確定一個(gè)圓的方程 需要三個(gè)獨(dú)立條件 選形式 定參數(shù) 是求圓的方程的基本方法 是指根據(jù)題設(shè)條件恰當(dāng)選擇圓的方程的形式 進(jìn)而確定其中的三個(gè)參數(shù) 2 解答圓的問題 應(yīng)注意數(shù)形結(jié)合 充分運(yùn)用圓的幾何性質(zhì) 簡(jiǎn)化運(yùn)算 方法與技巧 1 求圓的方程需要三個(gè)獨(dú)立條件 所以不論是設(shè)哪一種圓的方程都要列出系數(shù)的三個(gè)獨(dú)立方程 2 過圓外一定點(diǎn) 求圓的切線 應(yīng)該有兩個(gè)結(jié)果 若只求出一個(gè)結(jié)果 應(yīng)該考慮切線斜率不存在的情況 失誤與防范 返回 練出高分 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 已知點(diǎn)A 1 1 B 1 1 則以線段AB為直徑的圓的方程是 解析AB的中點(diǎn)坐標(biāo)為 0 0 圓的方程為x2 y2 2 x2 y2 2 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 設(shè)圓的方程是x2 y2 2ax 2y a 1 2 0 若0 a 1 則原點(diǎn)與圓的位置關(guān)系是 解析將圓的一般方程化成標(biāo)準(zhǔn)方程為 x a 2 y 1 2 2a 因?yàn)? a 1 所以 0 a 2 0 1 2 2a a 1 2 0 所以原點(diǎn)在圓外 原點(diǎn)在圓外 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 所以圓M的方程為 x 1 2 y2 4 答案 x 1 2 y2 4 解析由已知 可設(shè)圓M的圓心坐標(biāo)為 a 0 a 2 半徑為r 4 點(diǎn)P 4 2 與圓x2 y2 4上任一點(diǎn)連線的中點(diǎn)的軌跡方程是 解析設(shè)圓上任一點(diǎn)坐標(biāo)為 x0 y0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x 2 2 y 1 2 1 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 又圓與直線2x y 1 0相切 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 所以圓心坐標(biāo)為 1 2 則所求圓的方程為 x 1 2 y 2 2 5 答案 x 1 2 y 2 2 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 若圓C經(jīng)過坐標(biāo)原點(diǎn)和點(diǎn) 4 0 且與直線y 1相切 則圓C的方程是 解析答案 7 已知圓O x2 y2 1 直線x 2y 5 0上動(dòng)點(diǎn)P 過點(diǎn)P作圓O的一條切線 切點(diǎn)為A 則的最小值為 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 4 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 8 2014 湖北 已知圓O x2 y2 1和點(diǎn)A 2 0 若定點(diǎn)B b 0 b 2 和常數(shù) 滿足 對(duì)圓O上任意一點(diǎn)M 都有MB MA 則 1 b 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析因?yàn)辄c(diǎn)M為圓O上任意一點(diǎn) 所以不妨取圓O與x軸的兩個(gè)交點(diǎn) 1 0 和 1 0 當(dāng)M點(diǎn)取 1 0 時(shí) 由MB MA 得 b 1 當(dāng)M點(diǎn)取 1 0 時(shí) 由MB MA 得 b 1 3 消去 得 b 1 3 b 1 兩邊平方 化簡(jiǎn)得2b2 5b 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 解析答案 9 一圓經(jīng)過A 4 2 B 1 3 兩點(diǎn) 且在兩坐標(biāo)軸上的四個(gè)截距的和為2 求此圓的方程 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 解設(shè)所求圓的方程為x2 y2 Dx Ey F 0 令y 0 得x2 Dx F 0 所以x1 x2 D 令x 0 得y2 Ey F 0 所以y1 y2 E 由題意知 D E 2 即D E 2 0 又因?yàn)閳A過點(diǎn)A B 所以16 4 4D 2E F 0 1 9 D 3E F 0 解 組成的方程組得D 2 E 0 F 12 故所求圓的方程為x2 y2 2x 12 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解設(shè)P x y 圓P的半徑為r 則y2 2 r2 x2 3 r2 y2 2 x2 3 即y2 x2 1 P點(diǎn)的軌跡方程為y2 x2 1 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解設(shè)P的坐標(biāo)為 x0 y0 y0 x0 1 即y0 x0 1 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 圓P的方程為x2 y 1 2 3 圓P的方程為x2 y 1 2 3 綜上所述 圓P的方程為x2 y 1 2 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x 2 2 y 1 2 4 解析答案 12 設(shè)P為直線3x 4y 3 0上的動(dòng)點(diǎn) 過點(diǎn)P作圓C x2 y2 2x 2y 1 0的兩條切線 切點(diǎn)分別為A B 則四邊形PACB的面積的最小值為 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析依題意 圓C x 1 2 y 1 2 1的圓心是點(diǎn)C 1 1 半徑是1 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 13 過點(diǎn)P 1 1 的直線 將圓形區(qū)域 x y x2 y2 4 分為兩部分 使得這兩部分的面積之差最大 則該直線的方程為 解析當(dāng)圓心與P的連線和過點(diǎn)P的直線垂直時(shí) 符合條件 圓心O與P點(diǎn)連線的斜率k 1 所求直線方程為y 1 x 1 即x y 2 0 x y 2 0 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 已知點(diǎn)A 3 0 B 3 0 動(dòng)點(diǎn)P滿足PA 2PB 1 若點(diǎn)P的軌跡為曲線C 求此曲線的方程 解設(shè)點(diǎn)P的坐標(biāo)為 x y 化簡(jiǎn)可得 x 5 2 y2 16 此即為所求 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 若點(diǎn)Q在直線l1 x y 3 0上 直線l2經(jīng)過點(diǎn)Q且與曲線C只有一個(gè)公共點(diǎn)M 求QM的最小值 解曲線C是以點(diǎn) 5 0 為圓心 4為半徑的圓 如圖 由直線l2是此圓的切線 連結(jié)CQ CM 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 如圖 已知圓O的直徑AB 4 定直線l到圓心的距離為4 且直線l垂直于直線AB 點(diǎn)P是圓O上異于A B的任意一點(diǎn) 直線PA PB分別交l于M N兩點(diǎn) 1 若 PAB 30 求以MN為直徑的圓的方程 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解如圖 建立直角坐標(biāo)系 得 O的方程為x2 y2 4 直線l的方程為x 4 當(dāng)點(diǎn)P在x軸上方時(shí) 因?yàn)?PAB 30 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 將x 4分別代入 所以以MN為直徑的圓的方程為 x 4 2 y2 12 同理 當(dāng)點(diǎn)P在x軸下方時(shí) 所求圓的方程仍是 x 4 2 y2 12 綜上 以MN為直徑的圓的方程為 x 4 2 y2 12 2 當(dāng)點(diǎn)P變化時(shí) 求證 以MN為直徑的圓必過圓O內(nèi)的一定點(diǎn) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 返回 證明設(shè)點(diǎn)P的坐標(biāo)為 x0 y0 則y0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 將x 4分別代入 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 以MN為直徑的圓O 截x軸所得的線段長(zhǎng)度為 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 返回- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
14.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 平面解析幾何 9.3 圓的方程課件 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 第九 平面 解析幾何 方程 課件
鏈接地址:http://zhongcaozhi.com.cn/p-5625558.html