《高考數(shù)學(xué)二輪復(fù)習(xí) 第一篇 求準(zhǔn)提速 基礎(chǔ)小題不失分 第8練 導(dǎo)數(shù)課件 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)二輪復(fù)習(xí) 第一篇 求準(zhǔn)提速 基礎(chǔ)小題不失分 第8練 導(dǎo)數(shù)課件 文(56頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第一篇求準(zhǔn)提速基礎(chǔ)小題不失分第8練導(dǎo)數(shù)明考情導(dǎo)數(shù)的考查頻率較高,以“一大一小”的格局呈現(xiàn),小題難度多為中低檔.知考向1.導(dǎo)數(shù)的幾何意義.2.導(dǎo)數(shù)與函數(shù)的單調(diào)性.3.導(dǎo)數(shù)與函數(shù)的極值、最值.研透考點(diǎn)核心考點(diǎn)突破練欄目索引明辨是非易錯(cuò)易混專項(xiàng)練演練模擬高考押題沖刺練研透考點(diǎn)核心考點(diǎn)突破練考點(diǎn)一導(dǎo)數(shù)的幾何意義要點(diǎn)重組要點(diǎn)重組(1)f(x0)表示函數(shù)f(x)在xx0處的瞬時(shí)變化率.(2)f(x0)的幾何意義是曲線yf(x)在點(diǎn)P(x0,y0)處切線的斜率.12345答案解析2.函數(shù)f(x)excos x的圖象在點(diǎn)(0,f(0)處的切線方程是A.xy10 B.xy10C.xy10 D.xy1012345
2、答案解析解析解析f(0)e0cos 01,因?yàn)閒(x)excos xexsin x.所以f(0)1,所以切線方程為y1x0,即xy10,故選C.3.(2017包頭一模)已知函數(shù)f(x)x3ax1的圖象在點(diǎn)(1,f(1)處的切線過點(diǎn)(2,7),則a等于A.1 B.1 C.2 D.312345答案解析解析解析函數(shù)f(x)x3ax1的導(dǎo)數(shù)為f(x)3x2a,f(1)3a,而f(1)a2,所以切線方程為ya2(3a)(x1).因?yàn)榍芯€方程經(jīng)過點(diǎn)(2,7),所以7a2(3a)(21),解得a1.4.(2017天津)已知aR,設(shè)函數(shù)f(x)axln x的圖象在點(diǎn)(1,f(1)處的切線為l,則l在y軸上的截
3、距為_.12345答案解析f(1)a1.又f(1)a,切線l的斜率為a1,且過點(diǎn)(1,a),切線l的方程為ya(a1)(x1).令x0,得y1,故l在y軸上的截距為1.15.曲線f(x)xln x在點(diǎn)P(1,0)處的切線l與兩坐標(biāo)軸圍成的三角形的面積是_.解析解析f(x)1ln x,且f(1)1,切線l的斜率k1,切線方程為yx1,令x0,得y1;令y0,得x1,交點(diǎn)坐標(biāo)分別為A(0,1),B(1,0),則|OA|1,|OB|1,12345答案解析考點(diǎn)二導(dǎo)數(shù)與函數(shù)的單調(diào)性要點(diǎn)重組要點(diǎn)重組對(duì)于在(a,b)內(nèi)可導(dǎo)的函數(shù)f(x),若f(x)在(a,b)的任意子區(qū)間內(nèi)都不恒等于0,則(1)f(x)0(
4、x(a,b)f(x)在(a,b)上為增函數(shù).(2)f(x)0(x(a,b)f(x)在(a,b)上為減函數(shù).A.(,1) B.(0,1)C.(1,) D.(0,)解析解析f(x)的定義域是(0,),令f(x)0,解得0 x1.故函數(shù)f(x)在(0,1)上單調(diào)遞減.678910答案解析7.若函數(shù)f(x)2x33mx26x在區(qū)間(2,)上為增函數(shù),則實(shí)數(shù)m的取值范圍為當(dāng)x2時(shí),g(x)0,即g(x)在(2,)上單調(diào)遞增,解析解析f(x)6x26mx6,當(dāng)x(2,)時(shí),f(x)0恒成立,678910答案解析8.若定義在R上的函數(shù)f(x)滿足f(0)1,其導(dǎo)函數(shù)f(x)滿足f(x)k1,則下列結(jié)論中一定
5、錯(cuò)誤的是678910答案解析解析解析導(dǎo)函數(shù)f(x)滿足f(x)k1,678910可得g(x)0,故g(x)在R上為增函數(shù),f(0)1,選項(xiàng)C錯(cuò)誤,故選C.由題意g(x)0,所以g(x)單調(diào)遞增,所以 f(x2) f(x1).1ex2ex9.定義在R上的函數(shù)f(x)滿足f(x)f(x)恒成立,若x1 f(x1) B. f(x2)0時(shí),xf(x)f(x)0,則使得f(x)0成立的x的取值范圍是A.(,1)(0,1)B.(1,0)(1,)C.(,1)(1,0)D.(0,1)(1,)解析解析因?yàn)閒(x)(xR)為奇函數(shù),f(1)0,所以f(1)f(1)0.則g(x)為偶函數(shù),且g(1)g(1)0.故g
6、(x)在(0,)上為減函數(shù),在(,0)上為增函數(shù).綜上,使得f(x)0成立的x的取值范圍是(,1)(0,1),故選A.678910考點(diǎn)三導(dǎo)數(shù)與函數(shù)的極值、最值方法技巧方法技巧(1)函數(shù)零點(diǎn)問題,常利用數(shù)形結(jié)合與函數(shù)極值求解.(2)含參恒成立問題,可轉(zhuǎn)化為函數(shù)最值問題;若能分離參數(shù),可先分離.特別提醒特別提醒(1)f (x0)0是函數(shù)yf(x)在xx0處取得極值的必要不充分條件.(2)函數(shù)f(x)在a,b上有唯一一個(gè)極值點(diǎn),這個(gè)極值點(diǎn)就是最值點(diǎn).1112131415答案解析11.(2017永州二模)函數(shù)f(x)aexsin x在x0處有極值,則a的值為A.1 B.0 C.1 D.e解析解析f(x
7、)aexcos x,若函數(shù)f(x)aexsin x在x0處有極值,則f(0)a10,解得a1.經(jīng)檢驗(yàn)a1符合題意.1112131415答案解析答案解析111213141513.已知函數(shù)f(x)axln x,當(dāng)x(0,e(e為自然常數(shù))時(shí),函數(shù)f(x)的最小值為3,則a的值為A.e B.e2 C.2e D.2e2當(dāng)a0時(shí),f(x)0,f(x)在(0,e上單調(diào)遞減,f(x)minf(e)0,與題意不符.f(x)minf(e)0,與題意不符.綜上所述,ae2.故選B.11121314151112131415答案解析當(dāng)0 xe時(shí),h(x)0,當(dāng)xe時(shí),h(x)0,111213141515.已知函數(shù)f(
8、x)x33ax(aR), 函數(shù)g(x)ln x, 若在區(qū)間1, 2上f(x)的圖象恒在g(x)的圖象的上方(沒有公共點(diǎn)),則實(shí)數(shù)a的取值范圍是_.1112131415答案解析1x2,h(x)0,h(x)在1,2上單調(diào)遞增,h(x)minh(1)1,11121314151234明辨是非易錯(cuò)易混專項(xiàng)練答案解析A.1 B.3 C.4 D.21234直線l的斜率為kf(1)1.又f(1)0,切線l的方程為yx1.g(x)xm,設(shè)直線l與g(x)的圖象的切點(diǎn)為(x0,y0),于是解得m2.故選D.1234答案解析解析解析方法一方法一(特殊值法):不妨取a1,不具備在(,)上單調(diào)遞增,排除A,B,D.故選
9、C.123412343.函數(shù)f(x)的定義域?yàn)殚_區(qū)間(a,b),導(dǎo)函數(shù)f(x)在(a,b)內(nèi)的圖象如圖所示,則函數(shù)f(x)在開區(qū)間(a,b)內(nèi)的極小值點(diǎn)有A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)1234解析解析由極小值的定義及導(dǎo)函數(shù)f(x)的圖象可知,f(x)在開區(qū)間(a,b)內(nèi)有1個(gè)極小值點(diǎn).答案解析4.直線ya分別與直線y2(x1),曲線yxln x交于點(diǎn)A,B,則|AB|的最小值為_.1234答案解析設(shè)方程xln xa的根為t(t0),則tln ta,1234令g(t)0,得t1.當(dāng)t(0,1)時(shí),g(t)0,g(t)單調(diào)遞減;當(dāng)t(1,)時(shí),g(t)0,g(t)單調(diào)遞增,1234解題秘籍
10、解題秘籍(1)對(duì)于未知切點(diǎn)的切線問題,一般要先設(shè)出切點(diǎn).(2)f(x)遞增的充要條件是f(x)0,且f(x)在任意區(qū)間內(nèi)不恒為零.(3)利用導(dǎo)數(shù)求解函數(shù)的極值最值問題要利用數(shù)形結(jié)合思想,根據(jù)條件和結(jié)論的聯(lián)系靈活進(jìn)行轉(zhuǎn)化.演練模擬高考押題沖刺練1.(2017浙江)函數(shù)yf(x)的導(dǎo)函數(shù)yf(x)的圖象如圖所示,則函數(shù)yf(x)的圖象可能是123456789101112答案解析123456789101112解析解析觀察導(dǎo)函數(shù)f(x)的圖象可知,f(x)的函數(shù)值從左到右依次為小于0,大于0,小于0,大于0,對(duì)應(yīng)函數(shù)f(x)的增減性從左到右依次為減、增、減、增.觀察選項(xiàng)可知,排除A,C.如圖所示,f(
11、x)有3個(gè)零點(diǎn),從左到右依次設(shè)為x1,x2,x3,且x1,x3是極小值點(diǎn),x2是極大值點(diǎn),且x20,故選項(xiàng)D正確.故選D.123456789101112答案解析2.函數(shù)f(x)(x3)ex的單調(diào)遞增區(qū)間是A.(,2) B.(0,3)C.(1,4) D.(2,)解析解析函數(shù)f(x)(x3)ex的導(dǎo)函數(shù)為f(x)(x3)exex(x3)ex(x2)ex.由函數(shù)導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,得當(dāng)f(x)0時(shí),函數(shù)f(x)單調(diào)遞增,此時(shí)由不等式f(x)(x2)ex0,解得x2.A.4m5 B.2m4C.m2 D.m4123456789101112答案解析可得f(x)x2mx4,123456789101112
12、可得x2mx40在區(qū)間1,2上恒成立,當(dāng)且僅當(dāng)x2時(shí)取等號(hào),可得m4.4.若函數(shù)f(x)(x1)ex,則下列命題正確的是123456789101112答案解析解析解析f(x)(x2)ex,當(dāng)x2時(shí),f(x)0,f(x)為增函數(shù);當(dāng)x2時(shí),f(x)0,f(x)為減函數(shù).123456789101112A.x|x2 013B.x|x2 013C.x|2 013x0D.x|2 018x2 013123456789101112答案解析解析解析構(gòu)造函數(shù)g(x)x2f(x),則g(x)x2f(x)xf(x).當(dāng)x0時(shí),2f(x)xf(x)0,g(x)0,g(x)在(0,)上單調(diào)遞增.當(dāng)x2 0180,即x2
13、 018時(shí),(x2 018)2f(x2 018)52f(5),g(x2 018)g(5),x2 0185,2 018x2 013.123456789101112123456789101112答案解析6.設(shè)aR,若函數(shù)yexax,xR有大于零的極值點(diǎn),則A.a1解析解析yexax,yexa.函數(shù)yexax有大于零的極值點(diǎn),則方程yexa0有大于零的解.當(dāng)x0時(shí),ex1,aex1.7.設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f(x),且函數(shù)y(1x)f(x)的圖象如圖所示,則下列結(jié)論中一定成立的是A.函數(shù)f(x)有極大值f(2)和極小值f(1)B.函數(shù)f(x)有極大值f(2)和極小值f(1)C.函數(shù)f
14、(x)有極大值f(2)和極小值f(2)D.函數(shù)f(x)有極大值f(2)和極小值f(2)123456789101112答案解析解析解析由題圖可知,當(dāng)x0;當(dāng)2x1時(shí),f(x)0;當(dāng)1x2時(shí),f(x)2時(shí),f(x)0.由此可以得到函數(shù)f(x)在x2處取得極大值,在x2處取得極小值.123456789101112123456789101112答案解析解析解析因?yàn)閒(x)x3x2a,所以由題意可知,f (x)3x22x在區(qū)間0,a上存在x1,x2(0 x1x2a),所以方程3x22xa2a在區(qū)間(0,a)上有兩個(gè)不相等的實(shí)根.令g(x)3x22xa2a(0 xa),123456789101112解析解
15、析設(shè)點(diǎn)M(x1,y1),對(duì)y1ex求導(dǎo)得y1ex,令ex1e,x11,故M(1,e),9.分別在曲線y1ex與直線y2ex1上各取一點(diǎn)M與N,則|MN|的最小值為_.123456789101112答案解析10.已知函數(shù)yf(x)及其導(dǎo)函數(shù)yf(x)的圖象如圖所示,則曲線yf(x)在點(diǎn)P處的切線方程是_.xy20解析解析根據(jù)導(dǎo)數(shù)的幾何意義及圖象可知,曲線yf(x)在點(diǎn)P處的切線的斜率kf(2)1,又過點(diǎn)P(2,0),所以切線方程為xy20.123456789101112答案解析11.若在區(qū)間0,1上存在實(shí)數(shù)x使2x(3xa)1成立,則a的取值范圍是_.123456789101112(,1)解析解析2x(3xa)1可化為a2x3x,則在區(qū)間0,1上存在實(shí)數(shù)x使2x(3xa)1成立等價(jià)于a(2x3x)max,而2x3x在0,1上單調(diào)遞減,2x3x的最大值為2001,a0,則a的取值范圍是_.(,2)解析解析當(dāng)a0時(shí),不符合題意;當(dāng)a0時(shí),f(x)3ax26x,若a0,則由圖象知f(x)有負(fù)數(shù)零點(diǎn),不符合題意.則a0知,又a0,所以a2.綜上,實(shí)數(shù)a的取值范圍是(,2).123456789101112