《高考數(shù)學一輪復習 第10章第5節(jié) 變量的相關關系課件 文 新課標版》由會員分享,可在線閱讀,更多相關《高考數(shù)學一輪復習 第10章第5節(jié) 變量的相關關系課件 文 新課標版(30頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、1相關關系:與函數(shù)關系不同,相關關系是一種 關系2從散點圖上看,點散布在從左下角到右上角的區(qū)域內,兩個變量的這種相關關系為,點散布在從左上角到右下角的區(qū)域內,兩個變量的相關關系為 非確定性正相關負相關3從散點圖上看,如果這些點從整體上看大致分布在通過散點圖中心的一條直線附近,稱兩個變量之間具有 ,這條直線叫線性相關關系回歸直線1下列選項中,兩個變量具有相關關系的是()A正方形的邊長和它的面積B勻速行駛車輛的行駛路程與時間C人的身高與體重D人的身高與視力解析:A、B中的兩個變量是函數(shù)關系,D中的兩個變量不具有任何關系,C中的人的身高與體重具有相關關系答案:CA平均增加12個單位 B平均增加0.2
2、個單位C平均減少12個單位 D平均減少0.2個單位解析:隨變量x增大,變量y減小,且b0.2.答案:D3已知回歸直線的斜率的估計值是1.23,樣本點的中心為(4,5),則回歸直線的回歸方程是()答案:C答案:650 kg分析兩個變量的相關關系時,我們可根據(jù)樣本數(shù)據(jù)散點圖確定兩個變量之間是否存在相關關系,還可利用最小二乘法求出回歸直線方程,把樣本數(shù)據(jù)表示的點在直角坐標系中作出,構成的圖叫做散點圖從散點圖上,我們可以分析出兩個變量是否存在相關關系(即時鞏固詳解為教師用書獨有)考點一相關關系的判斷【案例1】在一次對人體的脂肪含量(百分比)和年齡關系的研究中,得到如下一組數(shù)據(jù):判斷它們是否有相關關系若
3、有,作一擬合直線年齡2327394145495053脂肪9.5 17.8 21.2 25.9 27.5 26.3 28.2 29.6關鍵提示:涉及兩個變量:年齡與脂肪含量,可以以年齡為自變量,考查脂肪含量的變化趨勢,而分析相關關系通常借助散點圖解:以x軸表示年齡,y軸表示脂肪含量,可得相應散點圖,由散點圖可知,兩者之間具有相關關系點評:判斷有無相關關系,常用的一種簡便可行的方法就是繪制散點圖【即時鞏固1】山東魯潔棉業(yè)公司的科研人員在7塊并排、形狀大小相同的試驗田上對某棉花新品種進行施化肥量x對產量y影響的試驗,得到如下表所示的一組數(shù)據(jù)(單位:kg):(1)畫出散點圖(2)判斷y與x是否具有相關
4、關系施化肥量x15202530354045棉花產量y330 345 365 405 445 450 455解:(1)散點圖如圖所示(2)由散點圖知,各組數(shù)據(jù)對應點大致都在一條直線附近,所以施化肥量x與產量y具有線性相關關系 考點二求線性回歸方程【案例2】假設關于某設備的使用年限x和所支出的維修費用y(單位:萬元)之間有如下的統(tǒng)計資料:使用年限x23456維修費用y2.23.85.56.57.0解:(1)列表,計算【即時鞏固2】隨著我國經濟的快速發(fā)展,城鄉(xiāng)居民的生活水平不斷提高,為研究某市家庭平均收入與月平均生活支出的關系,該市統(tǒng)計部門隨機調查10個家庭,得數(shù)據(jù)如下:(1)判斷家庭平均收入與月平
5、均生活支出是否相關?(2)若二者線性相關,求回歸直線方程家庭編號12345678910 xi(收入)千元 0.8 1.1 1.3 1.5 1.5 1.8 2.0 2.2 2.4 2.8yi(支出)千元 0.7 1.0 1.2 1.0 1.3 1.5 1.3 1.7 2.0 2.5解:(1)作出散點圖:觀察發(fā)現(xiàn)各個數(shù)據(jù)對應的點都在一條直線附近,所以二者呈線性相關關系考點三利用回歸直線對總體進行估計【案例3】有一位同學家開了一家小賣部,他為了研究氣溫對熱飲銷售的影響,經過統(tǒng)計,得到一個賣出熱飲杯數(shù)與當天氣溫的對比表:氣溫()熱飲杯數(shù)51560150413271281213015116(續(xù)表)氣溫(
6、) 熱飲杯數(shù)191042389279331763654(1)畫出散點圖(2)你能從散點圖中發(fā)現(xiàn)氣溫與熱飲銷售杯數(shù)之間關系的一般規(guī)律嗎?(3)求回歸方程(4)如果某天的氣溫是2 ,預測這天賣出的熱飲杯數(shù)關鍵提示:(1)將表中的各對數(shù)據(jù)在平面直角坐標系中描點,得到散點圖(2)按求回歸方程的步驟和公式,寫出回歸方程(3)利用回歸方程分析解:(1)以x軸表示溫度,以y軸表示熱飲杯數(shù),可作散點圖:(2)從圖中可以看出,各點散布在從左上角到右下角的區(qū)域里,因此,氣溫與熱飲銷售杯數(shù)之間是負相關關系,即氣溫越高,賣出去的熱飲杯數(shù)越少【即時鞏固3】煉鋼是一個氧化降碳的過程,鋼水含碳量的多少直接影響冶煉時間的長短,必須掌握鋼水含碳量和冶煉時間的關系如果已測得爐料熔化完畢時,鋼水的含碳量x與冶煉時間y(從爐料熔化完畢到出鋼的時間)的一列數(shù)據(jù),如表所示:x(0.01%)104180190177147134150191204121y(分鐘)100200210185155135170205235125(1)作出散點圖,你能從散點圖中發(fā)現(xiàn)含碳量與冶煉時間的一般規(guī)律嗎?(2)求回歸方程;(3)預測當鋼水含碳量為160時,應冶煉多少分鐘?解:(1)可作散點圖如圖所示:預測當鋼水含碳量為160時,應冶煉172.25分鐘