下載后文件包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985鋼管自動下料機摘 要鋼管自動下料機床是帶式輸送機托輥鋼管切斷、兩端倒角一次自動完成的專用設備,該機床自動化程度高、加工精度高,如送料,定位,夾緊,倒角,切斷依次進行,一次就能滿足鋼管的加工精度,不需要輔助加工,并且安裝調(diào)試方便。該設備采用的是硬質(zhì)合金刀(YT5 系列刀具) ,其硬度,耐磨性,耐熱性都很好,切削速度遠比高速鋼快得多。液壓系統(tǒng)中使用了雙聯(lián)泵供油,保證了運動速度,切斷采用進口調(diào)速出口被壓裝置,使切斷速度可調(diào)、工作穩(wěn)定。鋼管加工過程,由“自動送料—送料到位—夾緊—夾緊到位—進刀—進刀到位—自動落料 —放松退刀—退刀到位—自動送料”循環(huán)進行,大大提高工作效率,并能適應大批量生產(chǎn)加工。本產(chǎn)品在生產(chǎn)中應用可以提高產(chǎn)品質(zhì)量和經(jīng)濟效益,降低勞動強度。此次的設計主要是針對金屬管材進行加工的切管機,完成的工作主要是下料機結(jié)構(gòu)簡圖、主軸箱體和裝配圖的設計。包括傳動裝置的設計和計算,其中有電動機的選擇,傳動方案的擬訂,各軸的轉(zhuǎn)速,功率和轉(zhuǎn)矩的計算。總體結(jié)構(gòu)的設計,其中有各軸尺寸的設計,各主要傳動件的結(jié)構(gòu)尺寸的設計。并且針對以上的設計計算進行了詳細的校核。最后通過得到的數(shù)據(jù),繪制了裝配圖、結(jié)構(gòu)簡圖和裝配圖。然后又針對各主要基本件,繪制了 2 張零件圖。關(guān)鍵詞: 切斷倒角 刀具 液壓系統(tǒng) 轉(zhuǎn)動方案下載后文件包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985AbstractSteel pipe to be automatic feeding machine is of belt conveyor idlers cut off both ends, steel pipe Angle pouring a automatic completion of special equipment, this machine a high degree of automation, processing precision is high, such as feed, orientation, clamping and chamfering, to cut off the last out, one at a time can meet the machining precision of the steel tube, don't need to assist processing, installation and debugging is convenient. This equipment use is hard alloy knife (YT5 series tools), its hardness, wear resistance, heat resistance are all very good, high speed steel paper cutting speed than much faster. Hydraulic system used in double pump oil supply, ensure the movement speed, cut off the import export be pressure to speed device to make the cut speed adjustable, working stability. Steel pipe processing process,from “automatic feed-feed place clamping clamping in place feed feed in place to be automatic blanking relax recede cutter knife in place back automatic feed“cycles, and greatly improve the work efficiency, and can adapt to mass production and processing.This product can be used in the production process to improve product quality and economic efficiency, reduces the labor intensity.This is designed to carry on the processing of metal pipes cut pipe bender, complete the main job is feeding machine structure diagram, spindle box and the design of assembly drawings. Including the design and calculation of transmission device, including the choice of motor, transmission scheme of the draft, the axis of rotation speed, torque and power calculation. General structure design, including the axis of the size of the design, the main transmission parts of the design of the structure size. And according to the 下載后文件包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985design and calculationof the detailed check. Finally, through the data retrieved, mapped the assembly drawing, structure diagram and the assembly drawing. And then on the main basic parts, painted two to drawing.Keywords: cut off chamfering tool hydraulic system turn scheme目 錄前 言 .11 鋼管自動下料機 .41.1 機床主要規(guī)格及技術(shù)參數(shù) 41.2 機床簡介 41.2.2 機床工作適用條件 .51.3 機床結(jié)構(gòu)概述 51.3.1 機床工作原理 51.3.2 各主要部件結(jié)構(gòu)、性能 51.4 機床電器系統(tǒng) 61.4.1 電源 .61.4.2 控制按鈕功能 61.4.3 可編程序控制器(PLC)簡介 .72 機床元件主要參數(shù)的選擇及校核 .82.1 刀具的選擇 .82.1.1 刀具牌號材料的選擇 .82.1.2 刀具結(jié)構(gòu)的設計 92.2 電機的選擇 .92.1.1 轉(zhuǎn)速的確定 92.2.2 初選傳動比 I 和齒輪齒數(shù) .102.2.3 初算刀具的切削力 FC, (按切斷刀計算) 102.2.4 確定電機的參數(shù) 112.3 齒輪的確定 122.3.1 直齒輪參數(shù)的確定 .122.3.2 斜齒輪參數(shù)的確定 .132.3.3 齒輪的校核 142.4 皮帶的選擇與計算 .182.5 主軸的校核計算 202.6 軸承的的校核 232.7 液壓系統(tǒng) .252.7.1 結(jié)構(gòu): 252.7.2 工作原理 253.送料機構(gòu)的設計 263.1 送料機構(gòu)形式的確定: .263.2 送料小車的設計 .273.2.1 確定傳動形式 .273.2.2 選擇小車電機 273.2.3 皮帶的選擇 283.2.4 蝸輪蝸桿的確定及其校核計算 293.2.5 車輪的布置 313.3 小車軌道的選擇 .324.定尺機構(gòu) .334.1 機構(gòu)簡介 .334.2 動作順序 .334.3 工作原理 .335.簡單故障的處理 345.1.液壓故障的處理 .34結(jié) 論 .35參考文獻 .36致 謝 .37前 言鋼管是一種多功能經(jīng)濟斷面鋼材,它在國民經(jīng)濟各部門應用愈來愈廣泛,需求量也越來越大。管材的需要量之所以急劇增長,是因為管子能用各種材料來制造。而且質(zhì)量和精度也高。它一方面廣泛用于輸送油、氣、水等各種流體,被人們稱為工業(yè)“血管”;其次大量應用于機械制造和建筑工業(yè),也是一種抗彎能力較強的結(jié)構(gòu)材料,另一方面鋼管作為中空的零件毛坯用于制造滾動軸承、液壓支柱、液壓鋼簡體、空心鍵、花鍵套、螺母以及手表殼等,這既節(jié)約金屬又節(jié)約加工工時;其次鋼管又是軍隊工業(yè)中的重要材料,如用于制造槍管、炮筒及其他武器,隨航空、火箭、導彈、原子能與宇宙空間技術(shù)等的發(fā)展,精密、薄壁、高強度鋼管的需求量迅速增長。隨著鋼管的需求量的日益增大,鋼管的生產(chǎn)也顯得尤為重要,而鋼管自動下料機的應用,主要是為了降低勞動強度,節(jié)約人力,提高產(chǎn)品質(zhì)量。當然,保證經(jīng)濟性也是這次設計的重要考慮的重要項目之一。目前國內(nèi)外主要有手搖式、磁力式、鏈條式、軌道式鋼管下料機。手搖式鋼管下料機(管道下料機)優(yōu)點:制造成本低、價格便宜。缺點:1、手搖速度不均勻,切割粗糙;2、下料機在繞管子轉(zhuǎn)動的過程中,很多位置不好手搖操作,如頂面、底面等;3、切割中途出現(xiàn)緊急情況,不能及時關(guān)閉火焰;4、以鏈條限定行走軌跡會造成定位不準,切割精度不夠,割口差,鋼管常需要進行焊補或補割。磁力式自動管道下料機優(yōu)點:磁力式是利用磁力小車做行走機械,實現(xiàn)了自動切割。缺點:1、對鋼管橢圓度不好的情況下,磁力小車沿管壁走,行走路徑改變,特別是大口徑鋼管,焊接后橢圓度很難保持很好,切割效果不好。2、在表面有涂層或保溫層等情況下,磁力減少,無法克服自重,磁力式無法工作。3、在切割有縫管特別是螺旋管時,磁力式行走軌跡發(fā)生變化,磁力小車在經(jīng)過螺旋管的焊縫處易掉下來或是由于顛簸,行走機構(gòu)車輪走偏。4、不銹鋼等無磁性管道不能切割。5、磁力下料機放置到管子上的時候很難保證切割機體與管子端面的平行,行走偏差不可避免,管徑越大,偏差越大,因此常常先畫線,切割過程中再由工人實時監(jiān)控,出現(xiàn)偏差再手動干預,浪費工時,同時又不能徹底保證質(zhì)量。鏈條式自動管道下料機優(yōu)點:鏈條式自動下料機,克服了磁力式自動下料機切割過程中掉下來的。缺點:1、鏈條節(jié)與節(jié)之間有空隙,使用鏈條作為軌道,很難保證切割精度。鋼管口徑越大,誤差越大;2、鏈條為要一節(jié)一節(jié)安裝,鏈條在安裝過程中是松弛的,安裝好的鏈節(jié)容易脫落,安裝費時費力,并容易加劇上述 1 的缺點。并克服了手動鏈條式切割機的部分缺點,但依然有其致命的缺點。定位塊式管道下料機 優(yōu)點:定位準,切割準確。缺點:1、制造成本高;2、設備重,部件多,安裝費時費力;3、配件多,價格昂貴,且一組定位塊只能適合某一種特定管徑,一個齒條軌道,只能適合其中幾種管徑的切割,要實現(xiàn)柔性功能,要配全各種型號的配件。4、國內(nèi)沒有廠家做這種下料機,一般都是從國外進口,維修成本高,一次維修費高達萬元以上。STZQ 系列軌道鏈條復合式自動管道下料機 優(yōu)點:1、超高的切割精度;2、方便的控制模式; 3、簡便的安裝過程;4、更強的適應能力;5、優(yōu)越的防滑性能在本次研究中,稍微吸取上述下料機的各自優(yōu)點,并結(jié)合我國實際情況,設計了一款定位塊式托輥鋼管切斷機。目的在于對我國鋼管切割方面盡一點綿薄之力意見,以求在一定程度上提高產(chǎn)品質(zhì)量和經(jīng)濟效益,降低勞動強度。1 鋼管自動下料機1.1 機床主要規(guī)格及技術(shù)參數(shù)切斷鋼管直徑 φ60-φ159切斷鋼管長度 200-2000mm切斷長度誤差 ≤0.5mm切斷兩端面平行度 ≤0.4mm最大送料長度 12000mm工作時,除上料外,其余工序(送料、定位、夾緊、倒角、切斷)在此設備上自動完成,調(diào)整簡單、自動化程度高。該設備應采用硬質(zhì)合金刀加工,工作效率高,采用可編程序控制器(PLC)為中心的控制系統(tǒng),限位采用無觸點開關(guān),動作程序準確可靠。1.2 機床簡介1.2.1 機床主要用途及適用范圍本機床是帶式輸送機托輥鋼管切斷、兩端倒角一次自動完成的專用設備。倒角、切斷后不需輔助加工,其精度能滿足托輥鋼管的技術(shù)要求。適用于目前國內(nèi)外生產(chǎn)的帶式輸送機托輥鋼管的切斷加工。除上料外,其余工序(送料、定位、夾緊、倒角、切斷)在此設備上自動完成,調(diào)整簡單,自動化程度高。該設備采用硬質(zhì)合金刀加工,工作效率高。采用可編程序控制器(簡稱PLC)為中心的控制系統(tǒng),限位采用無觸點開關(guān),動作程序準確可靠。適用于大批量的專業(yè)化生產(chǎn)。1.2.2 機床工作適用條件適用于海拔不超過 1000 米,環(huán)境溫度在 10~40℃之間,無粉塵及各種腐蝕介質(zhì)的場合,被加工的管子須去除浮銹。1.3 機床結(jié)構(gòu)概述1.3.1 機床工作原理機床的工作過程: 小車在導軌上推動鋼管前進,鋼管穿過中空的主軸,頂住主軸箱另一側(cè)的定尺機構(gòu),由定尺確定要切斷倒角的鋼管的長度(從切刀刀頭到定尺的邊緣即為工件的切斷長度) 。當電機帶動小車推動的鋼管頂住定尺時,定尺右側(cè)的感應開關(guān)發(fā)出信號,彈簧夾套立即夾緊鋼管,待夾緊到位后倒角刀切斷刀依次進行,整個過程鋼管逆時針連同主軸一起同步旋轉(zhuǎn),刀具做進給運動.待刀具到位后被切斷的鋼管自動落料,刀具放松退回到位,下一次循環(huán)開始.整個循環(huán)過程按照“小車送料--送料到位--夾緊--進刀--進刀到位--自動落料--放松退回--退回到位--小車送料”的步驟進行。1.3.2 各主要部件結(jié)構(gòu)、性能主軸箱座: 材料選用鑄鐵,有減少震動作用,支承主傳動箱及主軸電機,并連接定尺機構(gòu)。主傳動箱:通過主軸電機經(jīng)減速機構(gòu)帶動主軸轉(zhuǎn)動,并通過夾緊軸、彈簧夾套使鋼管旋轉(zhuǎn),且可根據(jù)不同管子的直徑實現(xiàn)變速。刀架(兩套):由液壓缸帶動執(zhí)行進刀、退刀,分別實現(xiàn)鋼管的倒角、切斷。送料小車:此小車由電機通過減速機構(gòu)帶動行走,推動鋼管到位后進行加工。定尺機構(gòu):根據(jù)要求,可沿床身導軌移動定尺座,調(diào)整鋼管的切斷長度。工作時,定尺油缸伸出—實現(xiàn)鋼管定位,然后自動退回-- 保證切斷后的鋼管順利退出。1.4 機床電器系統(tǒng)1.4.1 電源操作臺外接電源為三相 380V50HZ 交流電,零線需可靠連接,保證 50A 電流,電源線大于 10mm2,操作臺內(nèi)“31”號線(PLC 接地線)必須單獨接地,導線大于 2mm2,接地電阻小于 100Ω,切不可與其它設備共地。1.4.2 控制按鈕功能(1)主令開關(guān) SA:用于工作方式轉(zhuǎn)換,自動循環(huán)-循環(huán)停止-手動調(diào)整。(2)油泵啟動、油泵停止、主軸啟動、主軸停止,分別用于控制油泵電機和主軸電機,它們的使用沒有工作方式的要求。(3)送料:料車退回為點動按鈕,控制料車的前進和后退。(4)夾緊:在手動調(diào)整狀態(tài)下使用,按動此按鈕,夾緊油缸動作,夾緊工件,再按一次則松開(此時主軸孔中必須有相應尺寸的工件) 。(5)進刀、退刀:在手動調(diào)整狀態(tài)下使用,為點動按鈕。(6)循環(huán)啟動:在自動循環(huán)狀態(tài)下使用,使設備自動連續(xù)工作。在循環(huán)狀態(tài)工作中,當管端與小車頂尖頂緊不牢時,可按送料按鈕使小車頂緊管子。(7)緊急制動:在緊急情況下使用,可切斷控制電源,緊急停止設備動作。1.4.3 可編程序控制器(PLC)簡介PLC 是設備控制系統(tǒng)的中樞,其內(nèi)部結(jié)構(gòu)是高精度、大規(guī)模集成電路,應特別注意維護與保養(yǎng),并做定期檢查,及時解決出現(xiàn)的問題。不要放置于高溫、潮濕、振動或有沖擊的地方。運輸時應采取防振措施,盡量減少振動。不要用腐蝕性較大的溶劑擦洗機殼。注意不要把電線頭、螺絲等零星物品落進機殼內(nèi)。2 機床元件主要參數(shù)的選擇及校核2.1 刀具的選擇2.1.1 刀具牌號材料的選擇加工鋼管材料為碳素鋼,選用硬質(zhì)合金鋼刀具,YT 類刀具適合加工碳素鋼,YW 類刀具加工鑄鐵,硬質(zhì)合金的硬度,耐磨性、耐熱性很高,切削速度遠超過高速鋼,加工效率高。而 YT5 相對YT15 韌性較好 ,硬度較高,不易損壞。所以刀具選用 YT5。牌號 WC TIC TAC CO 密度 硬度 抗彎強度抗壓強度彈性模量ISO 牌號TY5 85 5 10 12.5~13.289.5 104 4.6 590~600P302.1.2 刀具結(jié)構(gòu)的設計切刀倒角刀2.2 電機的選擇2.1.1 轉(zhuǎn)速的確定刀具的切削力 Fc 與切削速度 V 有關(guān),當選擇進給量 s,轉(zhuǎn)速到達 n 穩(wěn)定時,切削力基本保持不變。整個過程的動作時間(自定尺后到倒角切斷完成過程中)為15 秒。主軸的旋轉(zhuǎn)速度 n1 名義切向力: Ft=1.9x107xP/(dnc)=1.9x107 x11.76/112x595 得 3353N圓周速度:v=nmaxZ1mn/6000COSβ nmax=595r/min=3.14x595x4x28/60000 得 3.49m/s動載系數(shù): Kv=1+[k1/(FKA/b)+K2]Z1v[i2/(1+i2)]1/2/100=1+[12.10x30/3353x1.2+0.0192]x28x3.49x(4/1+4)1/2/100=1.002b=30mm 由表 3.4-37 k1=12.10,k2=0.0192齒向載荷:KHβ=1.1 由圖 3.4-5 3.4-6, b/d1=30/112=0.27 分布系數(shù): KFβ=1.2 KHβ=KFβ=0.18+1+0.15 得 1.33齒間載荷:KH 由表 3.4-38 FtKA/b=3353x1.2分配系數(shù):KFα KHα= KFα/30=134N/mm節(jié)點區(qū)域系數(shù):ZH 圖 3.4-7 得2.5彈性系數(shù) : ZE 表 3.4-39 189.8(N/mm2)1/2 齒輪副均為鋼 重合度及螺旋角系數(shù) Zεβ(接觸) 圖 3.4-8 得0.9εα=εα1+εα2=0.75+0.91=1.66許用接觸應力: 圖 3.4-3 及圖 3.4-9 采用 HJ-20,v=17-23,σHP=1150x0.91 得 1047N/mm2ZLVR=0.91復合齒行數(shù): 剃齒圖 3.4-11 YFS=4.84復合度及螺旋角系數(shù)(彎曲) 圖 3.4-12 Yεβ=0.70許用齒根系數(shù) : 3.4-4σFP=1.3X360 468N/mm2按接觸強度驗算模數(shù) :mH=267[KAKHPntKVKHβKHα1 名義切向力:Ft=1.9x107xP/(dnc)=1.9x107 x10.37/(220x417) 得 2147.7N圓周速度:v=nmaxZ5mn/6000COSβ nmax=417r/min=3.14x417x44x5/(60000x0.9) β=8°20′22 ″ 得 4.85m/s動載系數(shù): Kv=1+[k1/(FKA/b)+K2]Z1v[i2/(1+i2)]1/2/100=1+[12.10x84/2147.7x1.2+0.0192]x44x4.85x(1.982/1+1.982)1/2/100=1.782b=84mm 由表 3.4-37,k1=12.10,k2=0.0192齒向載荷 : KHβ 由圖 3.4-5 3.4-6, b/d1=84/220=0.38 分布系數(shù): KFβ KHβ=KFβ=0.36+1+0.2 得 1.56齒間載荷: KHα=1.1 由表 3.4-38 FtKA/b=2147.7x1.2分配系數(shù): KFα=1.2 KHα= KFα /84=30.68N/mm節(jié)點區(qū)域系數(shù): ZH=2.5彈性系數(shù): ZE= 189.8(N/mm2)1/2 齒輪副均為鋼 重合度及螺旋角系數(shù):Zεβ=0.9εα=εα1+εα2=0.75+0.91=1.66許用接觸應力: 采用 HJ-20,v=17-23,σHP=1150x0.91 得 1047N/mm2ZLVR=0.91復合齒行系數(shù)剃齒圖 3.4-11 YFS=4.84復合度及螺旋角系數(shù)(彎曲) 圖 3.4-12 Yεβ=0.70許用齒根應力: σFP=1.3X360 468N/mm2按接觸強度驗算模數(shù) mH=267[KAKHPntKVKHβKHα 4mm按彎曲強度驗算模數(shù) mF=3.240mm4mm結(jié)論 模數(shù)取為 4mm 滿足設計要求2.4 皮帶的選擇與計算保證帶在工作中不打滑,并具有一定的疲勞強度和使用壽命是 V 帶傳動設計的主要根據(jù),也是靠摩擦傳動的其他帶傳動設計的主要根據(jù)。此機床選擇普通 V 帶中的 B 型帶,其設計計算如下:計算功率 PC=KaxP=1.2x15 18kw選擇帶型 小帶輪轉(zhuǎn)速 n1=980r/min B 型帶小帶輪的基準直徑 dd1=125-140 取 140mm 為了提高帶的 壽命,如結(jié)構(gòu)允許應選較大直徑 大帶輪的基準直徑 dd2= n1dd1/n2(1-ε) ε=1.65x140x0.99 帶速 v=πdd1n1/60x1000≤vmax v=20 初定中心距 0.7(dd1+dd2) 〈a 0.7x362=253mm a0=255mm帶基準長度 Ld0=2a0+π (dd1+dd2)/2+(dd2-dd1)2/4a0=2x255+π/2x362+822/(4x255) =1120mm中心距 a=a0+(Ld-Ld0)/2=255+17 =272mma 的范圍: amax=a+0.03 Ld=272+33.6=306mmamin=a-0.015 Ld =272-16.8=255mm小帶輪的包角 a1=180°-(dd2-dd1)x57.3°/ a≥120° a1=162.7單根 V 帶傳動功率及其增量 P0=2.2KW △P0=1.5KW帶的根數(shù) Z Z==0.95x0.84x18/3.7=3.84 Z 取 4 根單根帶的初拉力 F0 F0=500(2.5/ Kα-1)Pα/ZV+mv2 =500x(2.5/0.95-1)15/4x7+0.2x72=447N 作用于軸上的力 Fr Fr=2F0Zsin(α/2)=2x447x4xSin80° =3504N2.5 主軸的校核計算設計圖紙中可以看出,主軸為最危險軸只需考慮主軸的強度是否符合要求,主軸的結(jié)構(gòu)簡圖如下:主軸的轉(zhuǎn)速為 n 轉(zhuǎn)=417×0.9×0.98=368r/min 由于機械損失傳遞到主軸的功率 P=15×0.8×0.9×0.98×0.9×0.98=9.34KW 傳遞到該軸的扭轉(zhuǎn)力矩為 MeMe=9550×P/368=9550×9.34/368=242.4Nm ,力矩 Me 是通過齒輪傳送的應有(F 為切削力) F*D/2=Me(D=0.435m)就是F=2Me/D=2×242.4/0.435=1114.5N 由平衡方程得齒輪上的法向力Fn 對軸線的力矩 Me′應與軸上的力矩 Me 相等 即 Me′=Fncos45°d1/2=Me Fn=2 Me/( cos45°d1)=(2×242.4)/(240×10-3×0.707)=2857N 具體的彎矩和扭矩圖如下 本科畢業(yè)設計(論文)中期檢查表指導教師: 職稱: 所在院(系):機械與動力工程學院 教研室(系、研究所):機制系題 目 鋼管自動下料機學生姓名 專業(yè)班級 學號 一、進度情況說明:(1)1-2周 實習階段主要為論文的開題做準備,初步形成對鋼管自動下料機的認知。(2)3-5周 查看相關(guān)資料、技術(shù)分析這3周主要閱讀從圖書館和書店得來的理論著作及相關(guān)資料。對機械運輸設備有一個統(tǒng)籌的了解,也形成對鋼管自動下料機選擇運輸方式的初步確認。(3)6-8周 設計初階段準備根據(jù)鋼管自動下料機設計任務書的要求,再結(jié)合2階段所收集的資料做一下具體的分析和處理。(4)9-16周 繪制圖紙、撰寫論文目前正處于撰寫論文階段,繪制圖紙還在準備中。(5)17周 準備答辯2、階段性成果已按期提交開題報告和實習報告,指導老師已同意開題現(xiàn)階段基本上對鋼管自動下料機的工作原理比較熟悉,在研究鋼管自動下料機各個機構(gòu)怎么工作時,有幸 設計技術(shù) ,和一 機械設計 有工作 的 進一 交 與 , 鋼管 時 和有 的 、鋼管進 時 和 的 、鋼管 ?¢£時?¥、?¥§currency1'導“的 和?£??fifl –鋼管長度公差為±0.05做了進一探 ?現(xiàn)在在撰寫論文和繪制圖紙階段,? · 理論??的查?和現(xiàn)?已工作”?的 的…‰,進一步了解了鋼管自動下料機,并在此基礎上對下料機進行了深刻的思考與分析。通過認真 和 結(jié) 有下料機的 ,結(jié)合 階段下料機的 , 及在 的 關(guān) 和 下 寫 了一 ?有理有據(jù)的畢業(yè)論文。3、 在的主要?題 ` ′:?題關(guān)?研究鋼管自動下料機的設計,實ˉ上fi對?˙機¨的 ? ?的設計?1、機¨本?的 ??要對?˙機¨有ˇ—的 ?和 的實ˉ 作 ,對機¨的 ? 有一£的 ,所 作為在 的 , 實fi一·題,?要· 的理論 ? 的aˇ, 現(xiàn)有的資料和 上的資 2、??設計?o 上的技術(shù)要 :所¢£的£?長度公差為¥±0.05, ?§,currency1 '的鋼管“?為φ60-φ159,£?的長度currency1在200-2000??自fi設 。對fl個 ?的–?計?,·?合,所 得??一 ??來”成,目前正?畢業(yè)論文撰寫作進一步”成。3…制圖方‰設計 要求? ,制圖`′選擇CAD,currency1 前??ˉ?˙了PROE,CAD制圖方‰¨要?˙,所 要”成 個設計的制圖£作,currency1?£作??,目前在撰寫論文的??,正?ˇ— 。、指導教師對學生在 業(yè)設計(論文) 的? 業(yè)設計(論文)?o的?成進 的? 指導教師: ( 0英文原文Latest Developments in Belt Conveyor TechnologyM. A. AlspaughOverland Conveyor Co., Inc.Presented at MINExpo 2004Las Vegas, NV, USASeptember 27, 2004AbstractBulk material transportation requirements have continued to press the belt conveyor industry to carry higher tonnages over longer distances and more diverse routes. In order keep up, significant technology advances have been required in the field of system design, analysis and numerical simulation. Examples of complex conveying applications along with the numerical tools required to insure reliability and availability will be reviewed.IntroductionAlthough the title of this presentation indicates “new” developments in belt conveyor technology will be presented, most of the ideas and methods offered here have been around for some time. We doubt any single piece of equipment or idea presented will be “new” to many of you. What is “new” are the significant and complex systems being built with mostly mature components ,what is also “new” is the increasing ability to produce accurate computer simulations of system performance prior to the first system test (commissioning).As such, the main focus of this presentation will be the latest developments in complex system design essential to properly engineer and optimize today’s long distance conveyance requirements. The four specific topics covered will be:? Energy Efficiency? Route Optimization? Distributed Power? Analysis and Simulation1Energy EfficiencyMinimizing overall power consumption is a critical aspect of any project and belt conveyors are no different. Although belt conveyors have always been an efficient means of transporting large tonnages as compared to other transport methods, there are still various methods to reduce power requirements on overland conveyors. The main resistances of a belt conveyor are made up of:? Idler Resistance? Rubber indentation due to idler support? Material/Belt flexure due to sag being idlers? AlignmentThese resistances plus miscellaneous secondary resistances and forces to over come gravity (lift) make up the required power to move the material.In a typical in-plant conveyor of 400m length, power might be broken into its components as per Figure 1 with lift making up the largest single component but all friction forces making up the majority.In a high incline conveyor such as an underground mine slope belt, power might be broken down as per Figure 2, with lift contributing a huge majority. Since there is no way to reduce gravity forces, there are no means to significantly 2reduce power on high incline belts.But in a long overland conveyor, power components will look much more like Figure 3, with frictional components making up almost all the power. In this case, attention to the main resistances is essential.The specifics of power calculation is beyond the scope of this paper but it is 3important to note that significant research has been done on all four areas of idlers, rubber indentation, alignment and material/belt flexure over the last few years. And although not everyone is in agreement as to how to handle each specific area, it is generally well accepted that attention to these main resistances is necessary and important to overall project economics.At the 2004 SME annual meeting, Walter Kung of MAN Takraf presented a paper titled “The Henderson Coarse Ore Conveying System- A Review of Commissioning, Start-up and Operation”2. This project was commissioned in December 1999 and consisted of a 24 km (3 flight) overland conveying system to replace the underground mine to mill rail haulage system.The longest conveyor in this system (PC2) was 16.28 km in length with 475m of lift. The most important system fact was that 50% of the operating power (~4000 kW at 1783 mt/h and 4.6 m/s) was required to turn an empty belt therefore power efficiency was critical. Very close attention was focused on the idlers, belt cover rubber and alignment. One way to document relative differences 4in efficiency is to use the DIN 22101 standard definition of “equivalent friction factor- f” as a way to compare the total of the main resistances. In the past, a typical DIN fused for design of a conveyor like this might be around 0.016. MAN Takraf was estimating their attention to power would allow them to realize an f of 0.011, a reduction of over 30%. This reduction contributed a significant saving in capital cost of the equipment. The actual measured results over 6 operating shifts after commissioning showed the value to be 0.0075, or even 30% lower than expected. Mr. Kung stated this reduction from expected to result in an additional US$100, 000 savings per year in electricity costs alone.Route OptimizationHorizontal AdaptabilityOf course the most efficient way to transport material from one point to the next is as directly as possible. But as we continue to transport longer distances by conveyor, the possibility of conveying in a straight line is less and less likely as many natural and man-made obstacles exist. The first horizontally curved conveyors were installed many years ago, but today it seems just about every overland conveyor being installed has at least one horizontal change in direction. And today’s technology allows designers to accommodate these curves relatively easily.Figures 5 and 6 shows an overland conveyor transporting coal from the 5stockpile to the ship loader at the Tianjin China Port Authority installed this year. Designed by E.J.O’Donovan however the system engineer can seldom test the finished system until it is completed on site. Therefore computational methods and tools are absolutely critical to simulate the interactions of various diverse disciplines and components. Dynamic Starting and StoppingWhen performing starting and stopping calculations per CEMA or DIN 22101 (static analysis), it is assumed all masses are accelerated at the same time and rate; in other words the belt is a rigid body (non-elastic). In reality, drive torque transmitted to the belt via the drive pulley creates a stress wave which starts the belt moving gradually as the wave propagates along the belt. Stress 15variations along the belt (and therefore elastic stretch of the belt) are caused by these longitudinal waves dampened by resistances to motion as described above.Many publications since 1959 have documented that neglecting belt elasticity in high capacity and/or long length conveyors during stopping and starting can lead to incorrect selection of the belting, drives, take-up, etc. Failure to include transient response to elasticity can result in inaccurate prediction of:? Maximum belt stresses? Maximum forces on pulleys? Minimum belt stresses and material spillage? Take-up force requirements? Take-up travel and speed requirements? Drive slip? Breakaway torque? Holdback torque? Load sharing between multiple drives? Material stability on an inclineIt is, therefore, important a mathematical model of the belt conveyor that takes belt elasticity into account during stopping and starting be considered in these critical, long applications. A model of the complete conveyor system can be achieved by dividing the conveyor into a series of finite elements. Each element has a mass and rheological spring as illustrated in Figure 26. Many methods of analyzing a belt’s physical behavior as a rheological spring have been studied and various techniques have been used. An appropriate model needs to address:1. Elastic modulus of the belt longitudinal tensile member2. Resistances to motion which are velocity dependent (i.e. idlers)3. Viscoelastic losses due to rubber-idler indentation4. Apparent belt modulus changes due to belt sag between idlers 16unloading. The transfer chute is often sited as the highest maintenance area of the conveyor and many significant production risks are centered here.Since the mathematics necessary to solve these dynamic problems are very complex, it is not the goal of this presentation to detail the theoretical basis of dynamic analysis. Rather, the purpose is to stress that as belt lengths increase and as horizontal curves and distributed power becomes more common, the importance of dynamic analysis taking belt elasticity into account is vital to properly develop control algorithms during both stopping and starting.Using the 8.5 km conveyor in Figure 23 as an example, two simulations of starting were performed to compare control algorithms. With a 2x1000 kW drive installed at the head end, a 2x1000 kW drive at a midpoint carry side location and a 1x1000kW drive at the tail, extreme care must be taken to insure proper coordination of all drives is maintained.Figure 27 illustrates a 90 second start with very poor coordination and severe oscillations in torque with corresponding oscillations in velocity and belt tensions. The T1/T2 slip ratio indicates drive slip could occur. Figure 28 shows the corresponding charts from a relatively good 180 second start coordinated to safely and smoothly accelerate the conveyor.Mass Flow at Transfer PointsOne of the reasons for using intermediate drives and running single flight conveyors longer and longer is to eliminate transfer points. Many of the most difficult problems associated with belt conveyors center around loading and? Plugging? Belt and Chute Damage and Abrasion? Material Degradation? Dust? Off Center Loading/SpillageIn the past, no analytical tools have been available to the design engineer so trial-and-error and experience were the only design methods available. Today, numerical simulation methods exist which allow designers to “test” their design prior to fabrication. 1819Numerical simulation is the discipline of designing a model of an actual physical system, executing the model on a computer, and analyzing the results.Simulation embodies the principle of “l(fā)earning by doing''. To understand reality and all of its complexity, we build artificial objects in the computer and dynamically watch the interactions.The Discrete Element Method (DEM) is a family of numerical modeling techniques and equations specifically designed to solve problems in engineering and applied science that exhibit gross discontinuous mechanical behavior such as bulk material flow. It should be noted that problems dominated by discontinuum behavior cannot be simulated with conventional continuum based computer modeling methods such as finite element analysis, finite difference procedures and/or even computational fluid dynamics (CFD).The DEM explicitly models the dynamic motion and mechanical interactions of each body or particle in the physical problem throughout a simulation and provides a detailed description of the positions, velocities, and forces acting on each body and/or particle at discrete points in time during the analysis. In the analysis, particles are modeled as shaped bodies. The bodies can interact with each other, with transfer boundary surfaces and with moving rubber conveyor belt surfaces. The contact/impact phenomena between the interacting bodies are modeled with a contact force law which has components defined in the normal and shear directions as well as rotation. The normal contact force component is generated with a linear elastic restoring component and a viscous damping term to simulate the energy loss in a normal collision. The linear elasticcomponent is modeled with a spring whose coefficient is based upon the normal 20stiffness of the contact bodies and the normal viscous damper coefficient is defined in terms of an equivalent coefficient of restitution (Figure 29).Figure 30 shows particles falling through a transfer chute. The colors of the particles in the visualization represent their velocity. The RED color is zero velocity while BLUE is the highest velocity. Perhaps the greatest benefit that can be derived form the use of these tools is the feeling an experienced engineer can develop by visualizing performance prior to building. From this feel, the designer can arrange the components in order to eliminate unwanted behavior. Other quantitative data can also be captured including impact and shear forces (wear) on the belt or chute walls.FutureBigger Belt ConveyorsThis paper referenced Henderson PC2 which is one of the longest single flight conventional conveyors in the world at 16.26 km. But a 19.1 km conveyor is under construction in the USA now, and a 23.5 km flight is being designed in Australia. Other conveyors 30-40 km long are being discussed in other parts of 21the world. Belt manufacturers have developed low rolling resistance rubber with claims of 10-15% power savings as methods to quantify indentation have become known. Together with improved installation methods and alignment, significant power efficiencies are possible.Underground coal mines and tunneling contractors will continue to use the proven concept of distributed power to their best advantage, but now at least two of the longer surface conveyors in development will be installing intermediate drives in 2005.In Germany, RWE Rheinbraun operates coal conveyors with 30,000 tph capacities and other surface coal mines have plans to soon be approaching these loads. With capacity increases, comes increases in belt speed; again demanding better installation, manufacturing tolerances and understanding of resistances and power. Each time we go longer, higher, wider or faster, we stretch the limits of our analytical tools to predict system performance. And because each conveyor is unique, the only way we have to predict performance is our numerical analysis and simulation tools. Therefore it is imperative we continue to improve our design tools as our goals get bigger. Belt Conveyors for Bulk Materials, 6th Ed, CEMAThe Conveyor Equipment Manufacturers Association (CEMA), recognizing many of the trends discussed in this paper, is currently producing the 6th Edition of the worldwide reference manual “Belt Conveyors for Bulk Materials” with longer center conveyors in mind. This is the first major revision of this manual since the 1980’s and reflects the need to update design methods for today’s demanding applications.22中文譯文輸送帶技術(shù)的最新發(fā)展M. A. AlspaughOverland Conveyor Co., Inc.Presented at MINExpo 2004Las Vegas, NV, USASeptember 27, 2004摘要大量的物質(zhì)運輸需求在促使帶式輸送機繼續(xù)朝大運量、長距離、多路徑發(fā)展。為滿足生產(chǎn)力的發(fā)展,在系統(tǒng)設計、分析和數(shù)值模擬等領(lǐng)域需要更多重要的技術(shù)革新。在這里我們將回顧一些復雜的、利用數(shù)學工具來保證其可靠性和適用性的實例。緒論盡管這篇文章的標題指出將會展現(xiàn)給大家?guī)捷斔蜋C“新的”發(fā)展技術(shù),但當中的大多數(shù)的思想和方法早已經(jīng)四處流傳了??峙缕渲腥魏我粋€的簡單設備或想法對大多數(shù)人都不是“新的”。 所謂“新的”東西就是一個在成熟的條件下建立的復雜、重要的系統(tǒng),是在一個系統(tǒng)檢測(試運轉(zhuǎn))之前對系統(tǒng)性能的精確計算機模擬能力的提高。因而,我們討論的主要焦點是,復雜帶式輸送機系統(tǒng)設計的最新發(fā)展,以及針對長距離運輸?shù)脑O計和優(yōu)化。四個被涵蓋的主題是:? 能量利用效率? 線路優(yōu)化? 動力分配? 分析和仿真能量利用率將總耗電量降到最小不論對于帶式輸送機還是其它項目都是問題的關(guān)鍵。盡管地面大運量運輸時利用帶式輸送機總是效率很高的手段,還是有23很多方法來降低其能量需求。帶式輸送機的運行阻力由以下幾部分組成:? 托輥阻力? 膠帶與托輥架擠壓? 膠帶垂度的影響? 調(diào)心托輥的影響這些阻力加上其它各種次要的阻力以及用來克服重力的升力,就形成所需總共的動力。在一條 400 m 長度的典型廠內(nèi)輸送機中,動力可能依照圖 1 被分成幾部分,其中運輸提升所需的動力是其中最大的一塊,而所有摩擦阻力又占它的了多半數(shù)。對于大傾角輸送機, 例如煤礦井下帶式輸送機,動力可能依照圖 2 所示分配,其中用于提升的動力占了極大的一部分。 因為沒有方法減少重力的影響,所以就沒有方法能顯著地減少在大傾角帶式輸送機上的動力消耗。但是在長距離地面輸送機中,動力組成的幾個部分就與圖3所示較為相似,動力幾乎全都消耗在摩擦阻力上。所以在這種情況下應特別關(guān)注帶式輸送機的主要阻力。有關(guān)詳細的動力計算在這里不做贅述,但值得關(guān)注的是,對于托輥、膠帶、調(diào)心、物料/膠帶彎曲這四方面近年來已完成許多有意義的研究工作。對于各個具體方面的問題如何處理,雖然仁者見仁、智者見智,但通常大家都認為,將著眼點放在主要阻力上對整個工程的經(jīng)濟性是重要且必需的。在 2004 SME 年會上,MAN Takraf 的Walter·Kung 介紹了一篇題為“亨德森粗礦石運輸系統(tǒng)——運行、啟動、操作評估”的論文。 這個工程于 1999 年 12月啟動,是由一條 24公里(3段)的地面輸送系統(tǒng)來代替地下挖掘碾磨軌道拖運系統(tǒng)。這個系統(tǒng) (PC2) 中的最長運送機長16.28 公里,提升高度475 m 。系統(tǒng)最重要的工況是使帶空載運轉(zhuǎn)時需要50% 的額定功率(約4000 千瓦,在1783 mtph 和 4.6 m/s時 ),這時功率效率達到臨界值。要把注意力集中在托輥, 覆蓋膠和調(diào)心上。 一種判斷效率上的相對差異的方法是使用 DIN(德國工業(yè)標準) 22101 標準定義中的“ 等效磨擦因數(shù)—f“ ,就如比較各個主要阻力的相對差異的方法一樣。過去,用于設計輸送機的典型f值DIN規(guī)定為0.016左右,但 MAN Takraf 估計以他們對動力情況的了解,允24許他們將f值降低30%,達到0.011。該值的減少會給設備的基本投資節(jié)省一筆不小的開支。試運行后,6次換檔的實測結(jié)果顯示,f值為0.0075,或是更小,比期望值低30%左右。 Kung說,只將f從期望值減少每年就會節(jié)省電費$100,000。路徑最優(yōu)化水平運輸?shù)倪m用性當然,從一處到另一處運送物料最有效的方法是盡可能直接地運輸。但是當我們用輸送機長距離連續(xù)輸送時,由于人為或自然的原因,能在直線運輸?shù)目赡苄陨僦稚?。第一臺水平曲線式輸送機的安裝在數(shù)年以前,但是今天幾乎每一臺安裝的地面輸送機都至少有一個水平方向的變化。而且今天的技術(shù)允許設計者相對容易地調(diào)整這些曲線。 圖 5 和 6 顯示在中國天津港務局,一條今年安裝的地面帶式輸送機正將煤從倉庫運送到裝船機。 這條9 公里的帶式輸送機由 E.J.O'Donovan與 Associates 設計、澳大利亞的Continental Conveyor 公司制造,運量為6000 mtph ,驅(qū)動功率為4 x1500 kW。位于美國懷俄明州Powder River 盆地的Wyodak礦井,是自1923年美國有年產(chǎn)量記錄以來最老的煤礦,而且如今還在不斷地產(chǎn)煤。它現(xiàn)在利用一臺水平半徑為700 m(2,300 ft) 地面帶式輸送機(圖 7) ,新煤坑離廠 756 m (2,482 英尺)。這證明受益于水平轉(zhuǎn)向,帶式輸送機不需要非常的長。隧道如果沒有水平曲線,建造隧道就不能利用帶式輸送機了。全世界都在挖掘隧道,以作為下水道或是運輸?shù)然A設施。將挖掘隧道時產(chǎn)生的棄渣運出,最有效的方法是在隧道鉆機的尾部連接一個推進式帶式輸送機。但很少有隧道是筆直的。例如,西班牙巴塞羅那的地下有一條直徑為 10.9 m 隧道,它是倫敦地鐵系統(tǒng)的延伸。Continental Conveyor 公司安裝了如圖 8 、9所示的第一個4.7 公里輸送機,而且最近已經(jīng)接受負責安裝第二個 8.39 公里的輸送機。Frontier Kemper Construction 正開始為Metropolitan St. Louis (位于密蘇里州)的排水區(qū)挖掘一條6.18 公里(20,275 英尺) 長、3.6 m(12英尺)寬的隧道。 這個名為Baumgartner 的隧道(圖 10) 將會裝備一個長6.1公里、帶寬600 毫米、具有4個中間傳動裝置的帶式輸送機。管狀輸送機25如果傳統(tǒng)的輸送機不能夠滿足半徑的要求, 就可用其他帶式運送機的變體例如管狀帶式輸送機。簡單的描述一下,一個管狀輸送機由一個卷成桶狀的傳送帶與輥子組成。這種很基本的設計方法可以使物料被輸送帶完全包起來,直接產(chǎn)生較高的效益。托輥在各方向約束著膠帶,就允許膠帶朝各個方向較大地彎曲。 曲線可能是水平的,垂直的或二者的結(jié)合。而傳統(tǒng)的輸送機只能靠膠帶和托輥的重力和摩擦力保證運輸路徑。管狀輸送機的另一個好處是能減少粉塵及灑漏,因為物料是完全被封閉的。這有一個經(jīng)典的例子,在美國猶他州的Skyline 礦中(圖 12),路徑與周圍環(huán)境很好的適應. 這條3.38 公里(11,088 英尺)長的管狀輸送機是由ThyssenKrupp Robins 安裝,穿過一個國家森林,而且中間水平換向22次、豎直換向45次。Metso鋼繩輸送機Metso鋼繩輸送機(MRC)是另一種從傳統(tǒng)型變化而來輸送機,人們一般稱它為鋼繩牽引輸送機。這一產(chǎn)品以長距離輸送聞名,世界最長的刮板式輸送機在澳大利亞的 Worsley Alumina ,長度為 30.4千米。它的牽引體與承載體是分開的(圖 13)。垂直的適用性有時物質(zhì)的需要被升起或降落,而常規(guī)的輸送機的傾角被限制在16-18 度。 但是帶式輸送機的再一次突破常規(guī)的變化使帶式輸送機可以成功地增大傾角,甚至可以垂直輸送。大傾角輸送機 (HAC)大傾角輸送機的第一臺樣機由Continental Conveyor 換句話說,帶一個剛體(如泡泡)。事實上,傳送到皮帶驅(qū)動力矩通過驅(qū)動滑輪創(chuàng)造了一個應力波帶逐漸開始移動的雷達波沿腰帶。應力沿著帶變化(因此彈性伸展帶)是由于這些縱向波運動絲毫抗逆性如上所述。自 1959 年以來有許多出版物上記載,當時忽略帶彈性高容量的輸送和/28或長在停止和啟動會導致不正確的選擇、驅(qū)動器、卷取機膠帶等。失敗,包括彈性瞬態(tài)響應的預測會導致不準確。最大混濁帶應力最大受力滑輪最低帶應力和材料泄漏或溢出收力要求收旅行和速度的要求驅(qū)動滑分離的扭矩扭矩蓄負載共享之間的多重驅(qū)動器材料穩(wěn)定性在一個斜坡因此,重要的數(shù)學模型,以帶彈性帶式輸送機在開始考慮停止,并被認為是在當前的危機,長期應用。一個完整的系統(tǒng)模型能夠?qū)崿F(xiàn)輸送機輸送帶劃分成一系列有限元素。每個元素都有一個質(zhì)量和流變春天如圖 26 歲。許多措施來分析一個帶的物理行為進行了研究流變春天和各種不同的技術(shù)已被使用。一個合適的模式需要地址:1 彈性模量皮帶縱向拉伸成員2 運動的抗逆性(即托輥速度依賴)3 粘彈性損失縮進4 由于模量變化明顯帶帶凹陷托輥之間卸載。瀑布附近轉(zhuǎn)移通常是為最高維護地區(qū)的許多重大生產(chǎn)輸送機和風險都集中在這里。從數(shù)學必要從解決這些動態(tài)問題非常復雜,它不是這樣做的目的詳細報告的理論基礎進行動態(tài)分析。更確切地說,這樣做的目的是要強調(diào)的是,皮帶長度增加,如水平曲線和分布式電源變得越來越普遍的重29要性,以帶彈性動力學分析考慮適當發(fā)展是至關(guān)重要的控制算法在停止和啟動。使用 8.5 公里輸送機在圖 23 為例,進行了兩個模擬比較開始控制算法。以 2 千瓦 x1000 安裝驅(qū)動的在頭結(jié)束,一個 2 x1000 千瓦開車帶在身邊中點位置和一個 1 x1000kW 尾巴,極端的速度駕車必須注意確保適當?shù)膮f(xié)調(diào)所有驅(qū)動器被維持。圖 27 也說明了一個 90 年的二開始艱難困苦的協(xié)調(diào)和嚴重的振蕩扭矩與相應的振蕩速度和帶間的緊張關(guān)系。T1 / T2 滑移率的顯示驅(qū)動滑移會出現(xiàn)。圖 28 顯示相應的圖表從一個比較好的調(diào)整到 180 第二次首發(fā)安全、正常加速輸送機。在傳輸點質(zhì)量流量原因之一中間驅(qū)動和運行使用單航班輸送機加長,消除傳輸點。許多最困難的有關(guān)的問題,圍繞負荷和帶式輸送機堵帶、溜槽傷害和磨損材料劣化灰塵離中心加載/溢出在過去,沒有分析工具已經(jīng)在設計工程師所以試誤和經(jīng)驗是唯一可用的設計方法。今天,數(shù)值模擬方法存在使設計者最為人們熟知的“測試”之前,他們的設計制造。數(shù)值仿真設計學科的一個實際的物理系統(tǒng)模型,該模型在一臺計算機上執(zhí)行,分析測試結(jié)果。模擬的原則體現(xiàn)了“從做中學” 。理解現(xiàn)實和它所有的復雜性,我們制造人工物體在電腦和動態(tài)觀察之間的相互作用。離散單元法(DEM)是一個家庭的數(shù)值模擬技術(shù)和方程專門設計來解決問題,在工程與應用科學學院展現(xiàn)總不連續(xù)等力學行為,松散材料的流動。應該指出的是,問題 discontinuum 占主導地位的行為不能與傳統(tǒng)的基于計算機模擬連續(xù)建模方法如有限元分析、有限差分程序和/或甚至計算流體動力學(CFD)。30其離散元模型的動態(tài)運動和明確的每一個身體或機械相互作用粒子的整個仿真和實際問題提供了詳細的描述和位置,速度,力量作用于身體的每個和/或離散時間點的粒子在分析。在分析、粒子形狀建模為身體。尸體可以互相作用,表面采用傳輸和移動邊界橡膠輸送帶的表面。接觸/沖擊現(xiàn)象之間的相互作用進行建模與身體接觸力法,定義了在正常元件和剪切方向以及旋轉(zhuǎn)。正常的接觸力構(gòu)件產(chǎn)生線性彈性恢復和一種粘性的組件阻尼項來模擬一個正常的碰撞能量損失。線性彈性以彈簧部件的系數(shù)是基于正常接觸物體的剛度和正常的粘性阻尼系數(shù)的角度來定義的等效系數(shù)歸還(如圖 29)。圖 30 顯示顆粒沉降槽通過轉(zhuǎn)移。粒子的顏色的可視化表達自己的速度。紅顏色是零速而藍色的最高速度。或許最大的好處,可以來源于使用這些工具是一位有經(jīng)驗的工程師的感覺能開發(fā)前觀察表現(xiàn)建筑。從這感覺,設計師可以安排組件以消除不必要的行為。其他定量數(shù)據(jù)也可以包括影響捕獲和剪切力(磨損)在帶或瀑布墻。未來更大的帶式輸送機的本文引用,亨德森 PC2 最長的一個單航班常規(guī)式輸送機在世界全長 16.26 公里。但是 19.1 公里的輸送機正在建設中在美國現(xiàn)在,和 23.5 公里的航班是被設計成在澳大利亞。其他輸送帶,30 - 40 公里長正在討論之中在世界上的其它地方。皮帶生產(chǎn)商已經(jīng)開發(fā)出低滾動阻力橡膠請求 10 - 15%的節(jié)省電源的方法已經(jīng)知道了量化縮進。用改進后的安裝方法和一起對齊、強大的力量效率是可能的。地下煤礦掘進承包商將繼續(xù)使用分布式電源的概念的證明他們的優(yōu)勢,但是現(xiàn)在至少有兩個更長時間的表面式輸送機在發(fā)展中間驅(qū)動安裝在 2005年。在德國,Rheinbraun RWE 經(jīng)營煤 30000 tph 輸送能力和其他表面煤礦計