《新課標(biāo)高三數(shù)學(xué) 一輪復(fù)習(xí) 第8篇 圓與方程學(xué)案 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《新課標(biāo)高三數(shù)學(xué) 一輪復(fù)習(xí) 第8篇 圓與方程學(xué)案 理(7頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
第四十九課時(shí) 圓與方程
課前預(yù)習(xí)案
考綱要求
1.掌握?qǐng)A的定義及性質(zhì),圓的標(biāo)準(zhǔn)方程與一般方程,
2.能用直線和圓的方程解決一些簡(jiǎn)單的問題,解決對(duì)稱問題、軌跡問題、最值問題,以及直線與圓和其他數(shù)學(xué)知識(shí)的綜合問題。
基礎(chǔ)知識(shí)梳理
1.圓的方程
(1) 圓的定義:平面內(nèi) 的點(diǎn)的集合(軌跡)叫做圓。
(2)圓的標(biāo)準(zhǔn)方程:圓心在、半徑為的圓的標(biāo)準(zhǔn)方程是
(3)圓的一般方程:當(dāng)時(shí),方程 ①叫做圓的一般方程.
它表示圓心為 ,半徑為
2、 的圓;當(dāng)時(shí),①表示點(diǎn) ;當(dāng)時(shí),①不表示任何圖形。
(4)求圓的方程的方法:待定系數(shù)法,先定式,后定量。如果與圓心和半徑有關(guān),一般選標(biāo)準(zhǔn)式,否則用一般式。
2.直線與圓的位置關(guān)系
(1)設(shè)直線圓,圓心到直線的距離為
(2)判斷直線與圓的位置關(guān)系的方法
方法一(幾何法):比較圓心到直線的距離與圓的半徑的大小關(guān)系
① ;② ;③
方法二(代數(shù)法):通過判別式判斷直線與圓的方程組的實(shí)數(shù)解的情況,確定直線和圓的位置。
(3)過圓上一點(diǎn)的圓的切線方程
設(shè)圓的標(biāo)準(zhǔn)方程,點(diǎn)M(x0
3、,y0)為圓上一點(diǎn),則過M的圓的切線方程為: ;
設(shè)圓的標(biāo)準(zhǔn)方程為,點(diǎn)M(x0,y0)圓上一點(diǎn),則過M的圓的切線方程為:
;
(4)求圓的切線的方法:設(shè)切線方程為y-y0=k(x-x0),利用點(diǎn)到直線的距離公式表示出圓心到切線的距離d,然后令d=r,進(jìn)而求出k.
提醒:在利用點(diǎn)斜式求切線方程時(shí),不要漏掉垂直于x軸的切線,即斜率不存在時(shí)的情況.
(5)求直線和圓相交的弦長(zhǎng)
方法一:解半徑、半弦、弦心距組成的直角三角形(注意解直角三角形算出的是弦長(zhǎng)的一半)。
方法二:利用弦長(zhǎng)公式。
3.圓與圓
4、的位置關(guān)系
兩圓的位置關(guān)系利用半徑與圓心距之間的關(guān)系來判斷,兩圓的
相離 ; 外切 ;相交 ; 內(nèi)切 ;
內(nèi)含 。
預(yù)習(xí)自測(cè)
1.過點(diǎn)與圓相交的所有直線中,被圓截得的弦最長(zhǎng)時(shí)的直線方程是 ( )
(A) (B) (C) (D)
2.圓⊙:,與圓⊙:的位置關(guān)系是( )
A.內(nèi)切 B.外切 C.相交 D.相離
3.圓心為(0,0),且與直線相
5、切的圓的方程為
4.圓C:的圓心到直線的距離是
5.經(jīng)過圓的圓心,且與直線垂直的直線方程是
課堂探究案
典型例題
考點(diǎn)1 圓的方程
【典例1】若圓的半徑為1,圓心在第一象限,且與直線和軸都相切,則該圓的標(biāo)準(zhǔn)方程是( )
A. B.
C. D.
【變式1】圓心在曲線 上,且與直線相切的面積最小的圓的方程為( ?。?
A. B.
C. D.
考點(diǎn)2 直線與圓的位置關(guān)系
【
6、典例2】過點(diǎn)()的直線l被圓截得的弦長(zhǎng)為,則直線l的斜率為 .
【變式2】直線與圓交于、兩點(diǎn),則( )
A、2 B、-2 C、4 D、-4
【變式3】直線與圓的位置關(guān)系為( )
A.相交 B.相切 C.相離 D.以上都有可能
考點(diǎn)3:與圓有關(guān)的軌跡問題
【典例3】的圓P與y軸相切,則圓心P的軌跡方程為 ( )
A. B.
C. D.
【變式4】已知?jiǎng)訄A過點(diǎn)(1,0),且與直線x=-1相切,則動(dòng)圓圓心的軌跡方程為( )
A. B. C. D.
考點(diǎn)4:
7、最值問題
【典例4】已知實(shí)數(shù)x、y滿足方程.
(1)求的最大值和最小值;
(2)求的最大值和最小值.
【變式5】在圓內(nèi),過點(diǎn)E(0,1)的最長(zhǎng)弦和最短弦分別是AC和BD,則四邊形ABCD的面積為( )
A. B. C. D.
當(dāng)堂檢測(cè)
1.已知圓上兩點(diǎn)M、N關(guān)于直線對(duì)稱,則圓的半徑為( )
A.9 B.3 C.2 D.2
2.已知圓C經(jīng)過點(diǎn)A(5,1),B(1,3)兩點(diǎn),圓心在x軸上,則C的方程是( )
A. B. C. D.
3.點(diǎn)P(4,-2)與圓上任一點(diǎn)連線的中點(diǎn)的軌跡方程是( )
A
8、 B.
C. D.
4.若圓的圓心到直線的距離為,則a的值為
課后拓展案
A組全員必做題
1.【20xx重慶】任意的實(shí)數(shù)k,直線與圓的位置關(guān)系一定是( )
A.相離 B.相切 C.相交但直線不過圓心 D.相交且直線過圓心
2.(20xx山東)過點(diǎn)(3,1)作圓的兩條切線,切點(diǎn)分別為,則直線的方程為( ?。〢. B. C. D.
3.若過點(diǎn)的直線與曲線 有公共點(diǎn),則直線斜率的取值范圍為 ( )
A.(, ) B.[, ] C.[, ] D.(, )
4.點(diǎn)為圓內(nèi)弦的中點(diǎn),
9、則直線的方程為( )
A. B. C. D.
5.直線有兩個(gè)不同交點(diǎn)的一個(gè)充分不必要條件是( )
A. B. C. D.
6.若直線被圓所截得的弦長(zhǎng)為,則實(shí)數(shù)a的值為( )
A. -1或 B. 1或3 C. -2或6 D. 0或4
7.若直線與曲線有公共點(diǎn),則b的取值范圍是( )
A.[,] B.[,3] C.[,3] D.[-1,]
8.若曲線:與曲線:有四個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍是( )
A.(,) B.(,0)∪(0,) C.[,] D.(,)∪(
10、,+)
9.直線與圓相交于A、B兩點(diǎn),則 .
B組提高選做題
1.設(shè),若直線與圓相切,則m+n的取值范圍是( )
(A) (B)
(C) (D)
2.已知直線與圓,則上各點(diǎn)到的距離的最小值為_______.
3.圓心在拋物線x2=2y上,與直線2x+2y+3=0相切的圓中,面積最小的圓的方程為 .
4.【20xx江蘇12】在平面直角坐標(biāo)系中,圓的方程為,若直線上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn),則的最大值是 .
5.在平面直角坐標(biāo)系xOy中,已知圓上有且僅有
11、四個(gè)點(diǎn)到直線12x-5y+c=0的距離為1,則實(shí)數(shù)c的取值范圍是__________
6 .(20xx江蘇卷)如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為,圓心在上.
(1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線的方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
參考答案
預(yù)習(xí)自測(cè)
1.C
2.B
3.;
4.3
5.
典型例題
【典例1】B
【變式1】A
【典例2】或
【變式2】A
【變式3】A
【典例3】C
【變式4】C
【典例4】解:方程可整理為.
(1)令,則.
則,解得.
12、即的最大值為,最小值為.
(2);.
【變式5】B
當(dāng)堂檢測(cè)
1.B
2.D
3.A
4.0或2
A組全員必做題
1.C
2.A
3.C
4.C
5.C
6.D
7.C
8. B
9.
B組提高選做題
1.D
2.
3.
4.
5.
6.解:(1)圓心是直線和的交點(diǎn),解得,
∴切線斜率必存在.
設(shè)過的圓的切線方程為,
則,解得或.
∴所求切線方程為或.
(2)圓心在直線上,
∴圓方程為,
設(shè)點(diǎn),由,
∴,整理得.
∴點(diǎn)在以為圓心,半徑為2的圓上.
由題意,點(diǎn)在圓上,
∴圓與圓有公共點(diǎn),
則,即,
∴,解得.
∴點(diǎn)橫坐標(biāo)的取值范圍為.