中國(guó)礦業(yè)大學(xué)計(jì)算力學(xué).ppt
《中國(guó)礦業(yè)大學(xué)計(jì)算力學(xué).ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《中國(guó)礦業(yè)大學(xué)計(jì)算力學(xué).ppt(43頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
數(shù)值分析 韓超Email kdhc 參考書(shū)目 Reference 數(shù)值分析 李慶揚(yáng)編 清華大學(xué)出版社 計(jì)算方法典型題分析解集 封建湖編 西北工業(yè)大學(xué)出版社 數(shù)值分析學(xué)習(xí)輔導(dǎo)習(xí)題解析 李紅編 華中科技大學(xué)出版社 NumericalAnalysis ThirdEdition DavidKincaid WardCheney數(shù)值分析 第三版 王國(guó)榮譯 機(jī)械工業(yè)出版社 許多科學(xué)研究與工程設(shè)計(jì)問(wèn)題最終都?xì)w結(jié)為一個(gè)數(shù)學(xué)問(wèn)題 它就是一個(gè)數(shù)學(xué)模型 通過(guò)求解這個(gè)數(shù)學(xué)模型 并對(duì)所獲得的數(shù)據(jù)分析 達(dá)到科學(xué)的真締與工程的完美 但是數(shù)學(xué)模型可能非常復(fù)雜 求出它的準(zhǔn)確解幾乎不可能 因此尋求它的近似解就非常重要 如何得到它的近似解 包括解析的和數(shù)值的 近似 值 是一個(gè)普遍現(xiàn)象 從日常生活到科學(xué)研究 工程設(shè)計(jì)無(wú)處不在 對(duì)一些復(fù)雜的 自然或社會(huì) 現(xiàn)象以及工程設(shè)計(jì)問(wèn)題我們完全可以用近似數(shù)據(jù)去解釋去完善 數(shù)值仿真已經(jīng)成為科學(xué)研究與工程設(shè)計(jì)中非常重要的方法或手段 現(xiàn)代計(jì)算機(jī)的發(fā)展為大量復(fù)雜數(shù)學(xué)模型的求解奠定了基礎(chǔ) 使得數(shù)值計(jì)算技術(shù)的發(fā)展獲得了巨大的支撐 求近似數(shù)據(jù)的關(guān)鍵途徑就是學(xué)習(xí)或研究數(shù)學(xué)問(wèn)題的 計(jì)算方法 或 數(shù)值分析 也稱(chēng)為 科學(xué)與工程計(jì)算 為什么學(xué)習(xí)數(shù)值計(jì)算方法 解決實(shí)際問(wèn)題的理想化過(guò)程 教材內(nèi)容體系 第一章緒論 第二章線性方程組的直接解法 第三章函數(shù)插值 第四章函數(shù)逼近 第五章數(shù)值積分法 第六章線性方程組的迭代解法 第七章非線性方程 組 的數(shù)值解法 第八章數(shù)值最優(yōu)化 第九章常微分方程的數(shù)值解法 第十章矩陣特征值問(wèn)題的數(shù)值解法 第一章緒論 1課程研究的內(nèi)容和構(gòu)造算法的主要途徑 2誤差 3有效算法要具備的條件 4靈敏度分析 5向量范數(shù)與矩陣范數(shù) 1研究?jī)?nèi)容和構(gòu)造算法的主要途徑 研究數(shù)學(xué)問(wèn)題數(shù)值解的計(jì)算方法 即研究算法的 1哪些數(shù)學(xué)問(wèn)題 大型線性方程組Ax b求解 矩陣A的特征值和特征向量計(jì)算 非線性方程的求解 求根 積分計(jì)算 常微分方程初值問(wèn)題求解 函數(shù)逼近等 2研究數(shù)值解的必要性 例1常微分方程初值問(wèn)題 其解析解 精確解 為 要求計(jì)算 等近似值 3構(gòu)造算法的主要思想 迭代法以直線代替曲線 非線性問(wèn)題線性化 化整為零 離散化 外推法 加速 好算法的三個(gè)標(biāo)準(zhǔn) 快 計(jì)算步驟少 收斂速度快準(zhǔn) 數(shù)值穩(wěn)定性好 計(jì)算結(jié)果可靠性高省 節(jié)省計(jì)算機(jī)內(nèi)存 大型稀疏矩陣問(wèn)題 快 計(jì)算步驟少 收斂速度快 例2多項(xiàng)式求值的Hornor算法 秦九韶算法P7 給定x的值 計(jì)算的值 算法1 按自然順序計(jì)算 乘法次數(shù) 加法次數(shù) n 算法2 嵌套算法 Hornor 秦九韶 乘法次數(shù) 加法次數(shù) n 例3解線性方程組 算法1 Cramer法則 乘除法次數(shù)An 萬(wàn)年 算法2 Gauss消去法 乘除法次數(shù) 耗時(shí) 秒 例5計(jì)算積分的梯形公式與Simpson公式 非線性方程求根 Newton法比二分法快 例4如FFT 快速傅立葉變換 零乘一個(gè)數(shù)省去 2 準(zhǔn) 數(shù)值穩(wěn)定性好 計(jì)算結(jié)果可靠性高 例6求根 假設(shè)計(jì)算機(jī)有尾數(shù)為5位 算法1 算法2 例7計(jì)算積分 由分部積分法可得 取迭代初值 由遞推公式 計(jì)算得 算法1 直接積分 算法不穩(wěn)定 結(jié)果不可靠 而 可見(jiàn)遞推計(jì)算結(jié)果嚴(yán)重失真 取 將迭代格式變形成如下格式 計(jì)算結(jié)果相當(dāng)好 算法2易知 算法穩(wěn)定 結(jié)果可靠 1 穩(wěn)定性 若一種算法的初始誤差和舍入誤差在運(yùn)算過(guò)程中不增長(zhǎng) 則稱(chēng)此算法是穩(wěn)定的 2 誤差分析 算法1 記 則 誤差逐漸增大 式不穩(wěn)定 算法2 記 則 誤差沒(méi)有增大 算法穩(wěn)定 所以 為了 準(zhǔn) 要注意的原則 1 防止大數(shù)吃小數(shù) 利用求根公式 在計(jì)算機(jī)內(nèi) 109存為0 1 1010 1存為0 1 101 做加法時(shí) 兩加數(shù)的指數(shù)先向大指數(shù)對(duì)齊 再將浮點(diǎn)部分相加 即1的指數(shù)部分須變?yōu)?010 則 1 0 0000000001 1010 取單精度時(shí)就成為 109 1 0 10000000 1010 0 00000000 1010 0 10000000 1010 大數(shù)吃小數(shù) 算法1 先解出再利用 注 求和時(shí)從小到大相加 可使和的誤差減小 2 按從小到大 以及從大到小的順序分別計(jì)算1 2 3 40 109 算法2 如1 在五位十進(jìn)制計(jì)算機(jī)上計(jì)算 解 2 防止相近的數(shù)相減 例9 解決辦法 通常情況下 當(dāng) x 1時(shí) 3 防止絕對(duì)值很小的數(shù)做分母 例10 2誤差的來(lái)源和基本概念 模型誤差 觀測(cè)誤差 截?cái)嗾`差 舍入誤差 1截?cái)嗾`差 也稱(chēng)為方法誤差 涉及方法的收斂性 2舍入誤差 由計(jì)算機(jī)的浮點(diǎn)運(yùn)算產(chǎn)生 涉及方法的穩(wěn)定性 如 用3 14159近似代替 則產(chǎn)生的誤差R 3 14059 0 0000026 為舍入誤差 二基本概念 假設(shè)x為準(zhǔn)確值 x 為近似值 則 絕對(duì)誤差 絕對(duì)誤差限 相對(duì)誤差 相對(duì)誤差限 三有效數(shù)字 例11 解 2位 2位 4位 3位 四有效數(shù)字與誤差限的關(guān)系 1有效數(shù)字與絕對(duì)誤差限的關(guān)系 2 有效數(shù)字與相對(duì)誤差的關(guān)系 有效數(shù)字 相對(duì)誤差限 已知x 有n位有效數(shù)字 則其相對(duì)誤差限為 相對(duì)誤差限 有效數(shù)字 已知x 的相對(duì)誤差限可寫(xiě)為則 可見(jiàn)x 至少有n位有效數(shù)字 例13為使的相對(duì)誤差小于0 001 至少應(yīng)取幾位有效數(shù)字 解假設(shè) 取到n位有效數(shù)字 則其相對(duì)誤差上限為 要保證其相對(duì)誤差小于0 001 只要保證其上限滿(mǎn)足 已知a1 3 則從以上不等式可解得n 6 log6 即n 6 應(yīng)取 3 14159 只要取n 3即可 即3位有效數(shù)字 例14要使的近似值相對(duì)誤差小于0 1 應(yīng)取幾位有效數(shù)字 解 例15 有十個(gè)復(fù)根 4靈敏度分析 靈敏度分析是分析一個(gè)數(shù)學(xué)問(wèn)題原始數(shù)據(jù)的微小變化對(duì)其解的擾動(dòng)情況 如果引起解發(fā)生較大的變化 則稱(chēng)該問(wèn)題是病態(tài)的 否則稱(chēng)該問(wèn)題是良態(tài)的 它反映了解對(duì)原始數(shù)據(jù)的敏感程度 抗干擾能力強(qiáng)良態(tài)的方程組 抗干擾能力弱病態(tài)的方程組 問(wèn)題 如何估計(jì)誤差向量的大小 如何對(duì)方程組的性態(tài)進(jìn)行判斷 衡量其病態(tài)程度 病態(tài)與否是該問(wèn)題固有的性質(zhì) 與采用何種計(jì)算方法沒(méi)有關(guān)系 5向量范數(shù)與矩陣范數(shù) 相關(guān)Matlab命令 norm x p norm x norm x 2- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 中國(guó) 礦業(yè)大學(xué) 計(jì)算 力學(xué)
鏈接地址:http://zhongcaozhi.com.cn/p-4239429.html