高中數(shù)學(xué)蘇教版選修22教學(xué)案:第1章 章末小結(jié) 知識(shí)整合與階段檢測(cè)
《高中數(shù)學(xué)蘇教版選修22教學(xué)案:第1章 章末小結(jié) 知識(shí)整合與階段檢測(cè)》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《高中數(shù)學(xué)蘇教版選修22教學(xué)案:第1章 章末小結(jié) 知識(shí)整合與階段檢測(cè)(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 精品資料 [對(duì)應(yīng)學(xué)生用書(shū)P31] 一、導(dǎo)數(shù)的概念 1.導(dǎo)數(shù) 函數(shù)y=f(x)在區(qū)間(a,b)上有定義,x0∈(a,b),當(dāng)Δx無(wú)限趨近于0時(shí),比值=無(wú)限趨近于一個(gè)常數(shù)A,則稱(chēng)f(x)在點(diǎn)x=x0處可導(dǎo),稱(chēng)常數(shù)A為函數(shù)f(x)在點(diǎn)x=x0處的導(dǎo)數(shù),記作f′(x0). 2.導(dǎo)函數(shù) 若f(x)對(duì)于區(qū)間(a,b)內(nèi)任一點(diǎn)都可導(dǎo),則f′(x)在各點(diǎn)的導(dǎo)數(shù)中隨著自變量x的變化而變化,因而也是自變量x的函數(shù),該函數(shù)稱(chēng)為f(x)的導(dǎo)函數(shù).記作f′(x). 二、導(dǎo)數(shù)的幾何意義 1.f′(x0)是函數(shù)y=f(x)在x0處切線(xiàn)的斜率,這
2、是導(dǎo)數(shù)的幾何意義. 2.求切線(xiàn)方程: 常見(jiàn)的類(lèi)型有兩種: 一是函數(shù)y=f(x)“在點(diǎn)x=x0處的切線(xiàn)方程”,這種類(lèi)型中(x0,f(x0))是曲線(xiàn)上的點(diǎn),其切線(xiàn)方程為 y-f(x0)=f′(x0)(x-x0). 二是函數(shù)y=f(x)“過(guò)某點(diǎn)的切線(xiàn)方程”,這種類(lèi)型中,該點(diǎn)不一定為切點(diǎn),可先設(shè)切點(diǎn)為Q(x1,y1),則切線(xiàn)方程為y-y1=f′(x1)(x-x1),再由切線(xiàn)過(guò)點(diǎn)P(x0,y0)得y0-y1=f′(x1)(x0-x1),又y1=f(x1),由上面兩個(gè)方程可解得x1,y1的值,即求出了過(guò)點(diǎn)P(x0,y0)的切線(xiàn)方程. 三、導(dǎo)數(shù)的運(yùn)算 1.基本初等函數(shù)的導(dǎo)數(shù) (1)f(x)=
3、C,則f′(x)=0(C為常數(shù)); (2)f(x)=xα,則f′(x)=αxα-1(α為常數(shù)); (3)f(x)=ax(a>0且a≠1),則f′(x)=axln a; (4)f(x)=logax(a>0,且a≠1),則f′(x)=; (5)f(x)=sin x,則f′(x)=cos x; (6)f(x)=cos x,則f′(x)=-sin x. 2.導(dǎo)數(shù)四則運(yùn)算法則 (1)[f(x)g(x)]′=f′(x)g′(x); (2)[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x); (3)′=(g(x)≠0). 四、導(dǎo)數(shù)與函數(shù)的單調(diào)性 利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟
4、: (1)求導(dǎo)數(shù)f′(x); (2)解不等式f′(x)>0或f′(x)<0; (3)寫(xiě)出單調(diào)增區(qū)間或減區(qū)間. 特別注意寫(xiě)單調(diào)區(qū)間時(shí),區(qū)間之間用“和”或“,”隔開(kāi),絕對(duì)不能用“∪”連接. 五、導(dǎo)數(shù)與函數(shù)的極值 利用導(dǎo)數(shù)求函數(shù)極值的步驟: (1)確定函數(shù)f(x)的定義域; (2)求方程f′(x)=0的根; (3)檢驗(yàn)f′(x)=0的根的兩側(cè)的f′(x)的符號(hào),若左正右負(fù),則f(x)在此根處取得極大值. 若左負(fù)右正,則f(x)在此根處取得極小值,否則此根不是f(x)的極值點(diǎn). 六、求函數(shù)f(x)在閉區(qū)間[a,b]上的最大值、最小值的方法與步驟 (1)求f(x)在(a,b)內(nèi)的
5、極值; (2)將(1)求得的極值與f(a)、f(b)相比較,其中最大的一個(gè)值為最大值,最小的一個(gè)值為最小值. 特別地,①當(dāng)f(x)在[a,b]上單調(diào)時(shí),其最小值、最大值在區(qū)間端點(diǎn)取得;②當(dāng)f(x)在(a,b)內(nèi)只有一個(gè)極值點(diǎn)時(shí),若在這一點(diǎn)處f(x)有極大(或極小)值,則可以判斷f(x)在該點(diǎn)處取得最大(或最小)值,這里(a,b)也可以是(-∞,+∞). 七、導(dǎo)數(shù)的實(shí)際應(yīng)用 利用導(dǎo)數(shù)求實(shí)際問(wèn)題的最大(小)值時(shí),應(yīng)注意的問(wèn)題: (1)求實(shí)際問(wèn)題的最大(小)值時(shí),一定要從問(wèn)題的實(shí)際意義去考查,不符合實(shí)際意義的值應(yīng)舍去. (2)在實(shí)際問(wèn)題中,由f′(x)=0常常僅解到一個(gè)根,若能判斷函數(shù)的
6、最大(小)值在x的變化區(qū)間內(nèi)部得到,則這個(gè)根處的函數(shù)值就是所求的最大(小)值. 八.定積分 (1)定積分是一個(gè)數(shù)值.定積分的定義體現(xiàn)的基本思想是:先分后合、化曲為直(以不變代變). 定積分的幾何意義是指相應(yīng)直線(xiàn)、曲線(xiàn)所圍曲邊梯形的面積.要注意區(qū)分f(x)dx,|f(x)|dx及三者的不同. (2)微積分基本定理是計(jì)算定積分的一般方法,關(guān)鍵是求被積函數(shù)的原函數(shù).而求被積函數(shù)的原函數(shù)和求函數(shù)的導(dǎo)函數(shù)恰好互為逆運(yùn)算,要注意它們?cè)谟?jì)算和求解中的不同,避免混淆. 一、填空題(本大題共14個(gè)小題,每小題5分,共70分,把答案填在題中橫線(xiàn)上) 1.已知函數(shù)f(x)=ax2+c,且f′(1)
7、=2,則a的值為_(kāi)_______. 解析:∵f(x)=ax2+c,∴f′(x)=2ax, ∴f′(1)=2a, 又∵f′(1)=2,∴a=1. 答案:1 2.曲線(xiàn)y=x3-4x在點(diǎn)(1,-3)處的切線(xiàn)的傾斜角為_(kāi)_______. 解析:∵y′=3x2-4, ∴當(dāng)x=1時(shí),y′=-1,即tan α=-1. 又∵α∈(0,π),∴α=π. 答案:π 3.已知函數(shù)f(x)=-x3+ax2-x+18在(-∞,+∞)上是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是________. 解析:由題意得f′(x)=-3x2+2ax-1≤0在(-∞,+∞)上恒成立,因此Δ=4a2-12≤0?-≤a≤,所
8、以實(shí)數(shù)a的取值范圍是[-,]. 答案:[-,] 4.y=2x3-3x2+a的極大值為6,則a=________. 解析:y′=6x2-6x=6x(x-1), 令y′=0,則x=0或x=1. 當(dāng)x=0時(shí),y=a,當(dāng)x=1時(shí),y=a-1. 由題意知a=6. 答案:6 5.函數(shù)y=的導(dǎo)數(shù)為_(kāi)_______. 解析:y′=′ = =. 答案: 6.若(x-k)dx=,則實(shí)數(shù)k的值為_(kāi)_______. 解析:(x-k)dx==-k=, 解得k=-1. 答案:-1 7.函數(shù)f(x)=x2-ln x的單調(diào)遞減區(qū)間是________. 解析:∵f′(x)=2x-=. 令f
9、′(x)<0,因?yàn)閤∈(0,+∞),
∴2x2-1<0,即0 10、x3在第一象限內(nèi)圍成的封閉圖形的面積為==4.
答案:4
10.若f(x)=則f(x)dx=________.
解析:因?yàn)閒(x)dx=(-x)dx+(x2+3)dx.
因?yàn)椤洌剑瓁,′=x2+3,
所以f(x)dx=-x2+=.
答案:
11.設(shè)曲線(xiàn)y=xn+1(n∈N*)在點(diǎn)(1,1)處的切線(xiàn)與x軸的交點(diǎn)的橫坐標(biāo)為xn,令an=lg xn,則a1+a2+…+a99=________.
解析:由于y′=n+1,∴曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)為y-1=(n+1)(x-1),令y=0,得x=xn=,
∴an=lg,∴原式=lg +lg+…+lg=lg=lg=-2.
答案:-2
11、
12.若函數(shù)f(x)=2x2-ln x在其定義域的一個(gè)子區(qū)間(k-1,k+1)內(nèi)不是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍是________.
解析:∵f′(x)=4x-=,x>0,∴當(dāng)0 12、π(cm3).
答案:π cm3
14.已知f(x)定義域?yàn)?0,+∞),f′(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f(x)<-xf′(x),則不等式f(x+1)>(x-1)f(x2-1)的解集是________.
解析:令g(x)=xf(x)
則g′(x)=f(x)+xf′(x)<0.
∴g(x)在(0,+∞)上為減函數(shù).
又∵f(x+1)>(x-1)f(x2-1),
∴(x+1)f(x+1)>(x2-1)f(x2-1),
∴?
∴x>2.
答案:{x|x>2}
二、解答題(本大題共6個(gè)小題,共90分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟)
15.(本小題滿(mǎn)分14分)已知 13、函數(shù)f(x)=ax2-ax+b,f(1)=2,f′(1)=1.
(1)求f(x)的解析式;
(2)求f(x)在(1,2)處的切線(xiàn)方程.
解:(1)f′(x)=2ax-a,
由已知得 解得
所以f(x)=x2-2x+.
(2)函數(shù)f(x)在(1,2)處的切線(xiàn)方程為y-2=x-1,
即x-y+1=0.
16.(本小題滿(mǎn)分14分)求下列定積分.
(1)(1-t3)dt;
(2)(cos x+ex)dx;
(3)dx.
解:(1)∵′=1-t3,
∴(1-t3)dt==-(-2-4)=.
(2)∵(sin x+ex)′=cos x+ex,
∴(cos x+ex)dx=(s 14、in x+ex)
=1-e-π=1-.
(3)dx=dx
取F(x)=x2-3x-,
則F′(x)=x-3+,
dx=F(4)-F(2)
=-
=.
17.(本小題滿(mǎn)分14分)已知x=1是函數(shù)f(x)=ax3-x2+(a+1)x+5的一個(gè)極值點(diǎn).
(1)求函數(shù)f(x)的解析式;
(2)若曲線(xiàn)y=f(x)與直線(xiàn)y=2x+m有三個(gè)交點(diǎn),求實(shí)數(shù)m的取值范圍.
解:(1)依題意f′(x)=ax2-3x+a+1,
由f′(1)=0得a=1,
∴函數(shù)f(x)的解析式為f(x)=x3-x2+2x+5.
(2)曲線(xiàn)y=f(x)與直線(xiàn)y=2x+m有三個(gè)交點(diǎn),
即x3-x2+2x+5 15、-2x-m=0有三個(gè)實(shí)數(shù)根,
令g(x)=x3-x2+2x+5-2x-m=x3-x2+5-m,則g(x)有三個(gè)零點(diǎn).
由g′(x)=x2-3x=0得x=0或x=3.
令g′(x)>0得x<0或x>3;令g′(x)<0得0 16、點(diǎn)(1,f(1))處的切線(xiàn)與曲線(xiàn)y=g(x)的公共點(diǎn)個(gè)數(shù);
(2)當(dāng)x∈時(shí),若函數(shù)y=f(x)-g(x)有兩個(gè)零點(diǎn),求a的取值范圍.
解:(1)f′(x)=ln x+1,所以斜率k=f′(1)=1.
又f(1)=0,曲線(xiàn)在點(diǎn)(1,0)處的切線(xiàn)方程為y=x-1.
由?x2+(1-a)x+1=0.
由Δ=(1-a)2-4=a2-2a-3可知:
當(dāng)Δ>0時(shí),即a<-1或a>3時(shí),有兩個(gè)公共點(diǎn);
當(dāng)Δ=0時(shí),即a=-1或a=3時(shí),有一個(gè)公共點(diǎn);
當(dāng)Δ<0時(shí),即-1<a<3時(shí),沒(méi)有公共點(diǎn).
(2)y=f(x)-g(x)=x2-ax+2+xln x,
由y=0得a=x++ln x.
17、令h(x)=x++ln x,
則h′(x)=.
當(dāng)x∈,由h′(x)=0得x=1.
所以h(x)在上單調(diào)遞減,在[1,e]上單調(diào)遞增,
故hmin(x)=h(1)=3.
由h=+2e-1,h(e)=e++1,
比較可知h>h(e).
所以,當(dāng)3<a≤e++1時(shí),函數(shù)y=f(x)-g(x)有兩個(gè)零點(diǎn).
19.(本題滿(mǎn)分16分)某公司將進(jìn)貨單價(jià)為a元(a為常數(shù),3≤a≤6)一件的商品按x元(7≤x≤10)一件銷(xiāo)售,一個(gè)月的銷(xiāo)售量為(12-x)2萬(wàn)件.
(1)求該公司經(jīng)銷(xiāo)此種商品一個(gè)月的利潤(rùn)L(x)(萬(wàn)元)與每件商品的售價(jià)x(元)的函數(shù)關(guān)系式;
(2)當(dāng)每件商品的售價(jià)為多少元時(shí), 18、L(x)取得最大值?并求L(x)的最大值.
解:(1)L(x)=(x-a)(12-x)2(7≤x≤10).
(2)L′(x)=(12-x)2+(x-a)(2x-24)
=(12-x)(12+2a-3x).
令L′(x)=0得x=或x=12.
由a∈[3,6]得∈[6,8].
當(dāng)∈[6,7],即3≤a≤時(shí),
L(x)在[7,10]上是減函數(shù),
L(x)的最大值為L(zhǎng)(7)=25(7-a);
當(dāng)∈(7,8],即
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識(shí)競(jìng)賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫(kù)試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫(kù)試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫(kù)試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識(shí)測(cè)試題庫(kù)及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測(cè)工種技術(shù)比武題庫(kù)含解析
- 1 礦山應(yīng)急救援安全知識(shí)競(jìng)賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案