浙江高考數(shù)學(xué)二輪復(fù)習(xí)練習(xí):專題限時集訓(xùn)12 圓錐曲線的定義、方程、幾何性質(zhì) Word版含答案

上傳人:仙*** 文檔編號:41994987 上傳時間:2021-11-24 格式:DOC 頁數(shù):9 大小:185.50KB
收藏 版權(quán)申訴 舉報 下載
浙江高考數(shù)學(xué)二輪復(fù)習(xí)練習(xí):專題限時集訓(xùn)12 圓錐曲線的定義、方程、幾何性質(zhì) Word版含答案_第1頁
第1頁 / 共9頁
浙江高考數(shù)學(xué)二輪復(fù)習(xí)練習(xí):專題限時集訓(xùn)12 圓錐曲線的定義、方程、幾何性質(zhì) Word版含答案_第2頁
第2頁 / 共9頁
浙江高考數(shù)學(xué)二輪復(fù)習(xí)練習(xí):專題限時集訓(xùn)12 圓錐曲線的定義、方程、幾何性質(zhì) Word版含答案_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《浙江高考數(shù)學(xué)二輪復(fù)習(xí)練習(xí):專題限時集訓(xùn)12 圓錐曲線的定義、方程、幾何性質(zhì) Word版含答案》由會員分享,可在線閱讀,更多相關(guān)《浙江高考數(shù)學(xué)二輪復(fù)習(xí)練習(xí):專題限時集訓(xùn)12 圓錐曲線的定義、方程、幾何性質(zhì) Word版含答案(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題限時集訓(xùn)(十二)  圓錐曲線的定義、方程、幾何性質(zhì) (對應(yīng)學(xué)生用書第141頁) [建議A、B組各用時:45分鐘] [A組 高考達標] 一、選擇題 1.設(shè)F為拋物線C:y2=4x的焦點,曲線y=(k>0)與C交于點P,PF⊥x軸,則k=(  ) A.     B.1     C.     D.2 D [∵y2=4x,∴F(1,0). 又∵曲線y=(k>0)與C交于點P,PF⊥x軸, ∴P(1,2). 將點P(1,2)的坐標代入y=(k>0)得k=2.故選D.] 2.過點A(0,1)作直線,與雙曲線x2-=1有且只有一個公共點,則符合條件的直線的條數(shù)為(

2、  ) A.0     B.2 C.4     D.無數(shù) C [過點A(0,1)和雙曲線的漸近線平行的直線和雙曲線只有一個公共點,這樣的直線有兩條,過點A(0,1)和雙曲線相切的直線只有一個公共點,這樣的直線也有兩條,故共四條直線與雙曲線有且只有一個公共點.] 3.已知雙曲線-=1(a>0,b>0)的焦距為2,且雙曲線的一條漸近線與直線2x+y=0垂直,則雙曲線的方程為(  ) A.-y2=1 B.x2-=1 C.-=1 D.-=1 A [由焦距為2得c=.因為雙曲線的一條漸近線與直線2x+y=0垂直,所以=. 又c2=a2+b2,解得a=2,b=

3、1, 所以雙曲線的方程為-y2=1.] 4.設(shè)點P是橢圓+=1(a>b>0)上一點,F(xiàn)1,F(xiàn)2分別是橢圓的左,右焦點,I為△PF1F2的內(nèi)心,若S△IPF1+S△IPF2=2S△IF1F2,則該橢圓的離心率為 (  ) A. B. C. D. A [因為S△IPF1+S△IPF2+S△IF1F2=S△PF1F2,所以3S△IF1F2=S△PF1F2,設(shè)△PF1F2內(nèi)切圓的半徑為r,則有×2c×r=×(|PF1|+|PF2|+2c)×r,整理得|PF1|+|PF2|=4c,即2a=4c,所以e=.] 5.已知橢圓C:+=1(a>b>0

4、)的離心率為.雙曲線x2-y2=1的漸近線與橢圓C有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓C的方程為(  ) 【導(dǎo)學(xué)號:68334127】 A.+=1 B.+=1 C.+=1 D.+=1 D [橢圓的離心率e===, 所以a=2b. 所以橢圓方程為x2+4y2=4b2. 因為雙曲線x2-y2=1的漸近線方程為x±y=0, 所以漸近線x±y=0與橢圓x2+4y2=4b2在第一象限的交點為, 所以由圓錐曲線的對稱性得四邊形在第一象限部分的面積為b×b=4, 所以b2=5,所以a2=4b2=20. 所以橢圓C的方

5、程為+=1.故選D.] 二、填空題 6.雙曲線M:x2-=1的左、右焦點分別為F1,F(xiàn)2,記|F1F2|=2c,以坐標原點O為圓心,c為半徑的圓與雙曲線M在第一象限的交點為P,若|PF1|=c+2,則P點的橫坐標為________.  [根據(jù)雙曲線的定義知|PF1|-|PF2|=2,又|PF1|=c+2,所以|PF2|=c,由勾股定理得(c+2)2+c2=4c2,即c2-2c-2=0,解得c=+1,根據(jù)△OPF2是等邊三角形得P點的橫坐標為.] 7.已知F1,F(xiàn)2為+=1的左、右焦點,M為橢圓上一點,則△MF1F2內(nèi)切圓的周長等于3π,若滿足條件的點M恰好有2個,則a2=______

6、__. 【導(dǎo)學(xué)號:68334128】 25 [由題意得內(nèi)切圓的半徑等于,因此△MF1F2的面積為××(2a+2c)=,即=×|yM|×2c,因為滿足條件的點M恰好有2個,所以M為橢圓短軸端點,即|yM|=4,所以3a=5c而a2-c2=16,所以a2=25.] 8.(2017·紹興一中高考考前適應(yīng)性考試)設(shè)拋物線y2=2px(p>0)的焦點為F,準線為l,過拋物線上一點A作l的垂線,垂足為B.設(shè)C,AF與BC相交于點E.若|CF|=2|AF|,且△ACE的面積為3,則p的值為________.  [由拋物線y2=2px可得F,則|

7、CF|=-=3p,又|CF|=2|AF|,則|AF|=,由拋物線的定義得|AB|=|AF|=,所以xA=p,則|yA|=p.由CF∥AB得△ABE∽△FCE,從而得===2,所以S△CEF=2S△CEA=6,S△ACF=S△AEC+S△CFE=9,所以×3p×p=9,解得p=. ] 三、解答題 9.(2017·溫州市普通高中高考模擬考試)已知A,B,C是拋物線y2=2px(p>0)上三個不同的點,且AB⊥AC. (1)若A(1,2),B(4,-4),求點C的坐標; (2)若拋物線上存在點D,使得線段AD總被直線BC平分,求點A的坐標. 圖12&

8、#173;5 [解] (1)∵A(1,2)在拋物線上, ∴p=2. 2分 設(shè)C,則由kABkAC=-1,得t=6, 即C(9,6). 4分 (2)設(shè)A(x0,y0),B,C, 則直線BC的方程為(y1+y2)y=2px+y1y2, 6分 由kABkAC=·=-1, 得y0(y1+y2)+y1y2+y=-4p2, 8分 代入直線BC的方程,得(y1+y2)(y+y0)=2p(x-2p-x0), 故直線BC恒過點E(x0+2p,-y0), 因此直線AE的方程為y=-(x-x0)+y0, 10分 代入拋物線的方程y2=2px(p>0), 得點D的坐標為

9、. 因為線段AD總被直線BC平分, 所以 13分 解得x0=,y0=±p 即點A的坐標為. 15分 10.已知橢圓E:+=1的焦點在x軸上,A是E的左頂點,斜率為k(k>0)的直線交E于A,M兩點,點N在E上,MA⊥NA. (1)當t=4,|AM|=|AN|時,求△AMN的面積; (2)當2|AM|=|AN|時,求k的取值范圍. [解] 設(shè)M(x1,y1),則由題意知y1>0. (1)當t=4時,E的方程為+=1,A(-2,0). 2分 由已知及橢圓的對稱性知,直線AM的傾斜角為. 因此直線AM的方程為y=x+2. 將x=y(tǒng)-2代入+=1得7y2

10、-12y=0. 解得y=0或y=,所以y1=. 4分 因此△AMN的面積S△AMN=2×××=. 5分 (2)由題意t>3,k>0,A(-,0). 將直線AM的方程y=k(x+)代入+=1得 (3+tk2)x2+2·tk2x+t2k2-3t=0. 由x1·(-)=得x1=, 故|AM|=|x1+|=. 7分 由題設(shè),直線AN的方程為y=-(x+), 故同理可得|AN|=. 由2|AM|=|AN|得=, 即(k3-2)t=3k(2k-1). 當k=時上式不成立,因此t=. 9分 t>3等價于=<0, 即<0. 1

11、1分 由此得或 解得<k<2. 因此k的取值范圍是(,2). 15分 [B組 名校沖刺] 一、選擇題 1.(2017·湖州調(diào)測)已知點A是拋物線C:x2=2py(p>0)上一點,O為坐標原點,若以點M(0,8)為圓心,|OA|的長為半徑的圓交拋物線C于A,B兩點,且△ABO為等邊三角形,則p的值是(  ) A.     B.2 C.6     D. D [由題意知|MA|=|OA|,所以點A的縱坐標為4,又△ABO為等邊三角形,所以點A的橫坐標為,又點A是拋物線C上一點,所以=2p×4,解得p=.] 2.已知焦點在x軸上的橢圓方程為+=1,隨

12、著a的增大該橢圓的形狀 (  ) A.越接近于圓 B.越扁 C.先接近于圓后越扁 D.先越扁后接近于圓 D [由題意知4a>a2+1且a>0,解得2-<a<2+,又e2=1-=1-=1-.因此當a∈(2-,1)時,e越來越大,當a∈(1,2+)時,e越來越小,故選D.] 3.已知F1,F(xiàn)2分別是雙曲線-=1(a>0,b>0)的左、右焦點,對于左支上任意一點P都有|PF2|2=8a|PF1|(a為實半軸),則此雙曲線的離心率e的取值范圍是(  ) 【導(dǎo)學(xué)號:68334129】 A.(1,+∞) B.(2,3] C.(1,3] D.(1,2] C [由P是雙曲線左支上任

13、意一點及雙曲線的定義,得|PF2|=2a+|PF1|,所以=|PF1|++4a=8a,所以|PF1|=2a,|PF2|=4a,在△PF1F2中,|PF1|+|PF2|≥|F1F2|,即2a+4a≥2a,所以e=≤3.又e>1,所以1<e≤3.故選C.] 4.(2017·嘉興調(diào)測)拋物線y2=2px(p>0)的焦點為F,已知點A,B為拋物線上的兩個動點,且滿足∠AFB=120°.過弦AB的中點M作拋物線準線的垂線MN,垂足為N,則的最大值為(  ) A.     B.1 C.     D.2 A [設(shè)AF=a,BF=b,由余弦定理得|AB|2=a2+b2-2

14、abcos 120°=a2+b2+ab=(a+b)2-ab≥(a+b)2-2=(a+b)2.∵a+b=AF+BF=2MN, ∴|AB|2≥|2MN|2,∴≤.] 二、填空題 5.設(shè)F1,F(xiàn)2是橢圓x2+=1(0<b<1)的左、右焦點,過F1的直線l交橢圓于A,B兩點,若|AF1|=3|F1B|,且AF2⊥x軸,則b2=________.  [由題意F1(-c,0),F(xiàn)2(c,0),AF2⊥x軸,∴|AF2|=b2,∴A點坐標為(c,b2),設(shè)B(x,y), 則|AF1|=3|F1B|,∴(-c-c,-b2)=3(x+c,y),∴B,代入橢圓方程可得2+=1.∵1=b2

15、+c2,∴b2=.] 6.(2017·杭州學(xué)軍中學(xué)高三模擬)已知拋物線y=x2和直線l:y=kx+m(m>0)交于兩點A,B,當·=2時,直線l過定點________;當m=________時,以AB為直徑的圓與直線y=-相切. (0,2)  [設(shè)A,B的坐標分別為(x1,y1),(x2,y2),聯(lián)立方程y=x2與y=kx+m,消去y得x2-kx-m=0,則x1+x2=k,x1x2=-m ① 所以y1y2=m2,y1+y2=k2+2m ② 又·=(x1,y1)·(x2,y2)=x1x2+y1y2=2,所以m2-m-2=0,又m>0,所以m=

16、2,則直線的方程為y=kx+2,故過定點(0,2).以AB為直徑的圓與直線y=-相切,故滿足方程2==,將①②代入,得4m2-2m+=0,解得m=.] 三、解答題 7.如圖12­6,橢圓C:+=1(a>b>0)的右焦點為F,右頂點、上頂點分別為點A,B,且|AB|=|BF|. 圖12­6 (1)求橢圓C的離心率; (2)若點M在橢圓C內(nèi)部,過點M的直線l交橢圓C于P,Q兩點,M為線段PQ的中點,且OP⊥OQ.求直線l的方程及橢圓C的方程. 【導(dǎo)學(xué)號:68334130】 [解] (1)由已知|AB|=|BF|,即=a, 2分 4a2+4b

17、2=5a2,4a2+4(a2-c2)=5a2, ∴e==. 4分 (2)由(1)知a2=4b2,∴橢圓C:+=1.設(shè)P(x1,y1),Q(x2,y2),由+=1,+=1, 可得+=0, 即+=0, 即+(y1-y2)=0,從而kPQ==2, 6分 ∴直線l的方程為y-=2,即2x-y+2=0. 8分 由?x2+4(2x+2)2-4b2=0,即17x2+32x+16-4b2=0, 9分 Δ=322+16×17(b2-4)>0?b>,x1+x2=-,x1x2=. 11分 ∵OP⊥OQ,∴·=0,即x1x2+y1y2=0, x1x2+(

18、2x1+2)(2x2+2)=0,5x1x2+4(x1+x2)+4=0, 13分 從而-+4=0,解得b=1,橢圓C的方程為+y2=1. 15分 8.已知拋物線C:y2=2x的焦點為F,平行于x軸的兩條直線l1,l2分別交C于A,B兩點,交C的準線于P,Q兩點. (1)若F在線段AB上,R是PQ的中點,證明:AR∥FQ; (2)若△PQF的面積是△ABF的面積的兩倍,求AB中點的軌跡方程. [解] 由題意知F.設(shè)l1:y=a,l2:y=b,則ab≠0,且A,B,P,Q,R. 記過A,B兩點的直線為l, 則l的方程為2x-(a+b)y+ab=0. 2分 (1)由于F在

19、線段AB上,故1+ab=0. 記AR的斜率為k1,F(xiàn)Q的斜率為k2,則 k1=====-b=k2. 所以AR∥FQ. 4分 (2)設(shè)l與x軸的交點為D(x1,0), 則S△ABF=|b-a||FD|=|b-a|, S△PQF=. 6分 由題設(shè)可得2×|b-a|=, 8分 所以x1=0(舍去)或x1=1. 設(shè)滿足條件的AB的中點為E(x,y). 當AB與x軸不垂直時, 9分 由kAB=kDE可得=(x≠1). 而=y(tǒng),所以y2=x-1(x≠1). 11分 當AB與x軸垂直時,E與D(1,0)重合. 所以,所求軌跡方程為y2=x-1. 15分

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!