高考數(shù)學復習:第五章 :第三節(jié) 等比數(shù)列及其前n項和演練知能檢測

上傳人:仙*** 文檔編號:40854589 上傳時間:2021-11-17 格式:DOC 頁數(shù):5 大小:188KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學復習:第五章 :第三節(jié) 等比數(shù)列及其前n項和演練知能檢測_第1頁
第1頁 / 共5頁
高考數(shù)學復習:第五章 :第三節(jié) 等比數(shù)列及其前n項和演練知能檢測_第2頁
第2頁 / 共5頁
高考數(shù)學復習:第五章 :第三節(jié) 等比數(shù)列及其前n項和演練知能檢測_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學復習:第五章 :第三節(jié) 等比數(shù)列及其前n項和演練知能檢測》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學復習:第五章 :第三節(jié) 等比數(shù)列及其前n項和演練知能檢測(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、△+△2019年數(shù)學高考教學資料△+△ 第三節(jié) 等比數(shù)列及其前n項和 [全盤鞏固] 1.設Sn是等比數(shù)列{an}的前n項和,a3=,S3=,則公比q=(  ) A. B.- C.1或- D.1或 解析:選C 當q=1時,a1=a2=a3=,S3=a1+a2+a3=,符合題意;當q≠1時,由題意得解得q=-.故q=1或q=-. 2.各項都為正數(shù)的等比數(shù)列{an}中,首項a1=3,前三項和為21,則a3+a4+a5=(  ) A.33 B.72 C.84 D.189 解析:選C ∵a1+

2、a2+a3=21, ∴a1+a1·q+a1·q2=21,3+3×q+3×q2=21,[來源:] 即1+q+q2=7,解得q=2或q=-3. ∵an>0,∴q=2,a3+a4+a5=21×q2=21×4=84. 3.已知等比數(shù)列{an}滿足an>0(n∈N*),且a5a2n-5=22n(n≥3),則當n≥1時,log2a1+log2a3+log2a5+…+log2a2n-1等于(  ) A.(n+1)2 B.n2 C.n(2n-1) D.(n-1)2 解析:選B 由等比數(shù)列

3、的性質(zhì)可知a5a2n-5=a, 又a5a2n-5=22n,所以an=2n. 又log2a2n-1=log222n-1=2n-1, 所以log2a1+log2a3+log2a5+…+log2a2n-1=1+3+5+…+(2n-1)==n2. 4.已知數(shù)列{an}滿足a1=5,anan+1=2n,則=(  ) A.2 B.4 C.5 D. 解析:選B 依題意得==2,即=2,故數(shù)列a1,a3,a5,a7,…是一個以5為首項、2為公比的等比數(shù)列,因此=4. 5.數(shù)列{an}中,已知對任意n∈N*,a1+a2+a3+…+an=3n-1,則a

4、+a+a+…+a=(  ) A.(3n-1)2 B.(9n-1) C.9n-1 D.(3n-1) 解析:選B ∵a1+a2+a3+…+an=3n-1,① ∴a1+a2+a3+…+an-1=3n-1-1.② 由①-②,得an=3n-3n-1=2×3n-1. ∴當n≥2時,an=3n-3n-1=2×3n-1, 又n=1時,a1=2適合上式, ∴an=2×3n-1, 故數(shù)列{a}是首項為4,公比為9的等比數(shù)列. 因此a+a+…+a==(9n-1). 6.已知{an}為等比數(shù)列,下面結(jié)論中正確的是(  ) A.a(chǎn)1+a3≥2a2

5、 B.a(chǎn)+a≥2a C.若a1=a3,則a1=a2 D.若a3>a1,則a4>a2 解析:選B 設{an}的首項為a1,公比為q,則a2=a1q,a3=a1q2.∵a1+a3=a1(1+q2),又1+q2≥2q,當a1>0時,a1(1+q2)≥2a1q,即a1+a3≥2a2;當a1<0時,a1(1+q2)≤2a1q,即a1+a3≤2a2,故A不正確;∵a+a=a(1+q4),又1+q4≥2q2且a>0,∴a+a≥2a,故B正確;若a1=a3,則q2=1.∴q=±1.當q=1時,a1=a2;當q=-1時,a1≠a2,故C不正確;D項中,若q>

6、0,則a3q>a1q,即a4>a2;若q<0,則a3q<a1q,此時a4<a2,故D不正確. 7.(2013·遼寧高考)已知等比數(shù)列{an}是遞增數(shù)列,Sn是{an}的前n項和.若a1,a3是方程x2-5x+4=0的兩個根,則S6=________. 解析:a1,a3是方程x2-5x+4=0的兩個根且{an}是遞增數(shù)列,故a3=4,a1=1,故公比q=2,S6==63. 答案:63 8.(2014·杭州模擬)公差不為0的等差數(shù)列{an}的部分項ak1,ak2,ak3,…,構(gòu)成等比數(shù)列,且k1=1,k2=2,k3=6,則k4=______

7、. 解析:據(jù)題意等差數(shù)列的a1,a2,a6成等比數(shù)列,設等差數(shù)列的公差為d,則有(a1+d)2=a1(a1+5d),解得d=3a1,故a2=4a1,a6=16a1?ak4=64a1=a1+3a1(n-1),解得n=22. 答案:22 9.(2013·江蘇高考)在正項等比數(shù)列{an}中,a5=,a6+a7=3.則滿足a1+a2+…+an>a1a2…an的最大正整數(shù)n的值為________. 解析:設等比數(shù)列的首項為a1,公比為q>0, 由得a1=,q=2. 所以an=2n-6. a1+a2+…+an=2n-5-2-5,a1a2…an=2. 由a1+a2+…+

8、an>a1a2…an,得2n-5-2-5>2, 由2n-5>2,得n2-13n+10<0, 解得<n<,取n=12,可以驗證當n=12時滿足a1+a2+…+an>a1a2…an,n≥13時不滿足a1+a2+…+an>a1a2…an,故n的最大值為12.[來源:] 答案:12 10.數(shù)列{an}中,Sn=1+kan(k≠0,k≠1). (1)證明:數(shù)列{an}為等比數(shù)列; (2)求通項an; (3)當k=-1時,求和a+a+…+a. 解:(1)證明:∵Sn=1+kan,① Sn-1=1+kan-1,② ①-②得Sn-Sn-1=k

9、an-kan-1(n≥2), ∴(k-1)an=kan-1,=為常數(shù),n≥2. ∴{an}是公比為的等比數(shù)列. (2)∵S1=a1=1+ka1,∴a1=. ∴an=·n-1=-. (3)∵{an}中a1=,q=, ∴{a}是首項為2,公比為2的等比數(shù)列. 當k=-1時,等比數(shù)列{a}的首項為,公比為, ∴a+a+…+a==. 11.已知函數(shù)f(x)=的圖象過原點,且關(guān)于點(-1,2)成中心對稱. (1)求函數(shù)f(x)的解析式; (2)若數(shù)列{an}滿足a1=2,an+1=f(an),證明數(shù)列為等比數(shù)列,并求出數(shù)列{an}的通項公式. 解:(1)∵f(0)=0,

10、∴c=0. ∵f(x)=的圖象關(guān)于點(-1,2)成中心對稱, ∴f(x)+f(-2-x)=4,解得b=2. ∴f(x)=. (2)∵an+1=f(an)=, ∴當n≥2時, =·=·=·=2. 又=2≠0, ∴數(shù)列是首項為2,公比為2的等比數(shù)列, ∴=2n,∴an=.[來源:] 12.已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N*). (1)求證:數(shù)列{an+1}是等比數(shù)列,并寫出數(shù)列{an}的通項公式; (2)若數(shù)列{bn}滿足4b1-1·4b2-1·4b3-1·…·4bn-1=(an

11、+1)n,求數(shù)列{bn}的前n項和Sn. 解:(1)證明:∵an+1=2an+1, ∴an+1+1=2(an+1), 又a1=1,∴a1+1=2≠0,an+1≠0, ∴=2, ∴數(shù)列{an+1}是首項為2,公比為2的等比數(shù)列. ∴an+1=2n,可得an=2n-1. (2)∵4b1-1·4b2-1·4b3-1·…·4bn-1=(an+1)n, ∴4b1+b2+b3+…+bn-n=2n2, ∴2(b1+b2+b3+…+bn)-2n=n2, 即2(b1+b2+b3+…+bn)=n2+2n, ∴Sn=b1+b2+b3+…+bn=n2+n.

12、 [沖擊名校] 1.設f(x)是定義在R上恒不為零的函數(shù),且對任意的實數(shù)x,y∈R,都有f(x)·f(y)=f(x+y),若a1=,an=f(n)(n∈N*),則數(shù)列{an}的前n項和Sn的取值范圍是________. 解析:由已知可得a1=f(1)=,a2=f(2)=[f(1)]2=2,a3=f(3)=f(2)f(1)=[f(1)]3=3,…,an=f(n)=[f(1)]n=n, 所以Sn=+2+3+…+n ==1-n. ∵n∈N*,∴≤Sn<1. 答案:[來源:] 2.數(shù)列{an}的前n項和記為Sn,a1=t,點(Sn,an+1)在直線y=3x+1上,n∈N

13、*. (1)當實數(shù)t為何值時,數(shù)列{an}是等比數(shù)列; (2)在(1)的結(jié)論下,設bn=log4an+1,cn=an+bn,Tn是數(shù)列{cn}的前n項和,求Tn. 解:(1)∵點(Sn,an+1)在直線y=3x+1上, ∴an+1=3Sn+1,an=3Sn-1+1(n>1,且n∈N*). ∴an+1-an=3(Sn-Sn-1)=3an, ∴an+1=4an(n>1,n∈N*), a2=3S1+1=3a1+1=3t+1, ∴當t=1時,a2=4a1,數(shù)列{an}是等比數(shù)列. (2)在(1)的結(jié)論下,an+1=4an,an+1=4n,bn=log4an+1=n,cn=

14、an+bn=4n-1+n, ∴Tn=c1+c2+…+cn=(40+1)+(41+2)+…+(4n-1+n)=(1+4+42+…+4n-1)+(1+2+3+…+n)=+. [高頻滾動] 1.已知等差數(shù)列{an}的前n項和為Sn,S4=40,Sn=210,Sn-4=130,則n=(  ) A.12 B.14 C.16 D.18 解析:選B Sn-Sn-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,a1+an=30,由Sn==210,得n=14. 2.已知數(shù)列{an}滿足a1=1

15、,且an=2an-1+2n(n≥2,n∈N*). (1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列{an}的通項公式; (2)求數(shù)列{an}的前n項和Sn. 解:(1)證明:因為an=2an-1+2n, 所以==+1,即-=1, 所以數(shù)列是等差數(shù)列,且公差d=1,其首項=,[來源:] 所以=+(n-1)×1=n-, 解得an=×2n=(2n-1)2n-1. (2)Sn=1×20+3×21+5×22+…+(2n-1)×2n-1,① 2Sn=1×21+3×22+5×23+…+(2n-3)×2n-1+(2n-1)×2n,② ①-②,得 -Sn=1×20+2×21+2×22+…+2×2n-1-(2n-1)2n=1+-(2n-1)2n=(3-2n)2n-3. 所以Sn=(2n-3)2n+3. 高考數(shù)學復習精品 高考數(shù)學復習精品

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!