《新課標(biāo)高三數(shù)學(xué)一輪復(fù)習(xí) 第2篇 第1節(jié) 函數(shù)及其表示課時(shí)訓(xùn)練 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《新課標(biāo)高三數(shù)學(xué)一輪復(fù)習(xí) 第2篇 第1節(jié) 函數(shù)及其表示課時(shí)訓(xùn)練 理(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
高考數(shù)學(xué)精品復(fù)習(xí)資料
2019.5
第二篇 函數(shù)、導(dǎo)數(shù)及其應(yīng)用(必修1、選修22)
第1節(jié) 函數(shù)及其表示課時(shí)訓(xùn)練 理
【選題明細(xì)表】
知識(shí)點(diǎn)、方法
題號(hào)
函數(shù)的概念
1、4
映射的概念
5
函數(shù)的定義域、值域
2、7、8、11、15
函數(shù)的表示方法
10、12、14
分段函數(shù)
3、6、9、13
一、選擇題
1.(20xx濰坊模擬)下列圖象可以表示以M={x|0≤x≤1}為定義域,以N={x|0≤x≤1}為值域的函數(shù)的是( C )
解析:依函數(shù)概念和已知條件.選C.
2.函數(shù)y=x2
2、2-x+lg(2x+1)的定義域是( B )
(A)(-12,+∞) (B)(-12,2)
(C)(-12,12) (D)(-∞,-12)
解析:x同時(shí)滿足不等式2-x>0,2x+1>0,
解得-12<x<2,
故所求函數(shù)的定義域是(-12,2).
故選B.
3.(20xx深圳模擬)設(shè)f(x)=x-2,x≥10,f(f(x+6)),x<10,則f(5)的值為( B )
(A)10 (B)11 (C)12 (D)13
解析:f(5)=f(f(11))=f(11-2)=f(9)=f(f(15))=f(13)=13-2=11.
4.下面各組函數(shù)中
3、為相等函數(shù)的是( D )
(A)f(x)=(x-1)2,g(x)=x-1
(B)f(x)=x+1,g(x)=x2-1x-1
(C)f(x)=ln ex與g(x)=eln x
(D)f(x)=x0與g(x)=1x0
解析:函數(shù)的三要素相同的函數(shù)為相等函數(shù),對(duì)于選項(xiàng)A,f(x)=|x-1|與g(x)對(duì)應(yīng)關(guān)系不同,故排除選項(xiàng)A,選項(xiàng)B、C中兩函數(shù)的定義域不同,排除選項(xiàng)B、C.
5.設(shè)A={0,1,2,4},B=12,0,1,2,6,8,則下列對(duì)應(yīng)關(guān)系能構(gòu)成A到B的映射的是( C )
(A)f:x→x3-1 (B)f:x→(x-1)2
(C)f:x→2x-1 (D)f:x→2x
解析
4、:對(duì)于選項(xiàng)A,由于集合A中x=0時(shí),x3-1=-1?B,即A中元素0在集合B中沒(méi)有元素與之對(duì)應(yīng),所以選項(xiàng)A不符合;同理可知B、D兩選項(xiàng)均不能構(gòu)成A到B的映射,選項(xiàng)C符合.
6.設(shè)f(x)=2ex-1,x<2,log3(x2-1),x≥2,則不等式f(x)>2的解集為( C )
(A)(1,2)∪(3,+∞) (B)(10,+∞)
(C)(1,2)∪(10,+∞) (D)(1,2)
解析:x<2時(shí),2ex-1>2,即ex-1>1,
∴x-1>0,
∴x>1,
∴1<x<2.
當(dāng)x≥2時(shí),log3(x2-1)>2,
5、
即x2-1>9,
∴x>10或x<-10(舍去),
∴x>10.
綜上,不等式f(x)>2的解集為(1,2)∪(10,+∞).
二、填空題
7.函數(shù)y=log0.5(4x-3)的定義域是 .
解析:由log0.5(4x-3)≥0,得0<4x-3≤1.
∴34<x≤1.
所以函數(shù)y=log0.5(4x-3)的定義域?yàn)?4,1.
答案:34,1
8.函數(shù)y=log13(2x+1)(1≤x≤3)的值域?yàn)椤 ?
解析:當(dāng)1≤x≤3時(shí),3≤2x+1≤9,
所以-2≤y≤-1,所求的值域?yàn)閇-2,-1].
6、
答案:[-2,-1]
9.已知函數(shù)f(x)=(a-1)x+1,x≤1,ax-1,x>1,若f(1)=12,則f(3)= .
解析:由f(1)=12,
可得a=12,
所以f(3)=(12)2=14.
答案:14
10.(20xx鄭州月考)已知函數(shù)f(x)滿足對(duì)任意的x∈R都有f(12+x)+f(12-x)=2成立,則f(18)+f(28)+…+f(78)= .
解析:由f(12+x)+f(12-x)=2
得f(18)+f(78)=2,
F(28)+f(68)=2,
F(38)+f(58)=2,
又f(48)=12[f(48)+
7、f(48)]
=12×2
=1,
∴f(18)+f(28)+…+f(78)=2×3+1=7.
答案:7
11.已知函數(shù)y=f(x2-1)的定義域?yàn)閇0,3],則函數(shù)y=f(x)的定義域?yàn)椤 ?若函數(shù)y=g(x)的定義域?yàn)閇0,3],則函數(shù)y=g(x2-1)的定義域?yàn)椤 ?
解析:∵0≤x≤3,
∴0≤x2≤9,
∴-1≤x2-1≤8,
∴函數(shù)y=f(x)的定義域?yàn)閇-1,8],
∵y=g(x)的定義域?yàn)閇0,3],
∴0≤x2-1≤3,
解得1≤x≤2或-2≤x≤-1.
答案:[-1,8] [1,2]或[-2,-1]
8、12.已知函數(shù)f(x)=2x+1與函數(shù)y=g(x)的圖象關(guān)于直線x=2成軸對(duì)稱圖形,則函數(shù)y=g(x)的解析式為 .
解析:設(shè)點(diǎn)M(x,y)為函數(shù)y=g(x)圖象上的任意一點(diǎn),點(diǎn)M′(x′,y′)是點(diǎn)M關(guān)于直線x=2的對(duì)稱點(diǎn),則x'=4-x,y'=y.
又y′=2x′+1,
∴y=2(4-x)+1=9-2x,
即g(x)=9-2x.
答案:g(x)=9-2x
13.已知函數(shù)f(x)=x2+2ax,x≥2,2x+1,x<2,若f(f(1))>3a2,則a的取值范圍是 .
解析:由題意知f(1)=2+
9、1=3,f(f(1))=f(3)=32+6a,
若f(f(1))>3a2,則9+6a>3a2,
即a2-2a-3<0,
解得-1<a<3.
答案:(-1,3)
三、解答題
14.甲同學(xué)家到乙同學(xué)家的途中有一公園,甲從家到公園的距離與乙從家到公園的距離都是2 km,甲10時(shí)出發(fā)前往乙家.如圖所示,表示甲從家出發(fā)到達(dá)乙家為止經(jīng)過(guò)的路程y(km)與時(shí)間x(min)的關(guān)系.試寫出y=f(x)的函數(shù)解析式.
解:當(dāng)x∈[0,30]時(shí),設(shè)y=k1x+b1,
由已知得b1=0,30k1+b1=2,
解得k1=115,b1=0.
即y=115x.
當(dāng)x∈
10、(30,40)時(shí),y=2;
當(dāng)x∈[40,60]時(shí),設(shè)y=k2x+b2,
由已知得40k2+b2=2,60k2+b2=4,
解得k2=110,b2=-2,
即y=110x-2.
綜上,f(x)=115x,x∈[0,30],2,x∈(30,40),110x-2,x∈[40,60].
15.設(shè)計(jì)一個(gè)水渠,其橫截面為等腰梯形(如圖),要求滿足條件AB+BC+CD=a(常數(shù)),∠ABC=120°,寫出橫截面的面積y關(guān)于腰長(zhǎng)x的函數(shù),并求它的定義域和值域.
解:如圖,∵AB+BC+CD=a,
∴BC=EF=a-2x>0,
即0<x<a2,
∵∠ABC=120°,∴∠A=60°,
∴AE=DF=x2,BE=32x,
y=12(BC+AD)·BE=3x4[2(a-2x)+x2+x2]
=34(2a-3x)x=-34(3x2-2ax)
=-334(x-a3)2+312a2,
故當(dāng)x=a3時(shí),y有最大值312a2,它的定義域?yàn)?0,a2),值域?yàn)?0,312a2].