高三理科數(shù)學新課標二輪復習專題整合高頻突破習題:專題八 選修4系列 專題能力訓練22 Word版含答案

上傳人:仙*** 文檔編號:40257557 上傳時間:2021-11-15 格式:DOC 頁數(shù):9 大小:3.03MB
收藏 版權(quán)申訴 舉報 下載
高三理科數(shù)學新課標二輪復習專題整合高頻突破習題:專題八 選修4系列 專題能力訓練22 Word版含答案_第1頁
第1頁 / 共9頁
高三理科數(shù)學新課標二輪復習專題整合高頻突破習題:專題八 選修4系列 專題能力訓練22 Word版含答案_第2頁
第2頁 / 共9頁
高三理科數(shù)學新課標二輪復習專題整合高頻突破習題:專題八 選修4系列 專題能力訓練22 Word版含答案_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高三理科數(shù)學新課標二輪復習專題整合高頻突破習題:專題八 選修4系列 專題能力訓練22 Word版含答案》由會員分享,可在線閱讀,更多相關(guān)《高三理科數(shù)學新課標二輪復習專題整合高頻突破習題:專題八 選修4系列 專題能力訓練22 Word版含答案(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 高考數(shù)學精品復習資料 2019.5 專題能力訓練22 坐標系與參數(shù)方程(選修4—4) 能力突破訓練 1.在平面直角坐標系xOy中,圓C的參數(shù)方程為x=1+3cost,y=-2+3sint(t為參數(shù)).在極坐標系(與平面直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸非負半軸為極軸)中,直線l的方程為2ρsinθ-π4=m(m∈R). (1)求圓C的普通方程及直線l的直角坐標方程; (2)設(shè)圓心C到直線l的距離等于2,求m的值. 2.(20xx江蘇,21C)在平面直角坐標

2、系xOy中,已知直線l的參數(shù)方程為x=-8+t,y=t2(t為參數(shù)),曲線C的參數(shù)方程為x=2s2,y=22s(s為參數(shù)).設(shè)P為曲線C上的動點,求點P到直線l的距離的最小值. 3.在直角坐標系xOy中,圓C的方程為(x+6)2+y2=25. (1)以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求C的極坐標方程; (2)直線l的參數(shù)方程是x=tcosα,y=tsinα(t為參數(shù)),l與C交于A,B兩點,|AB|=10,求l的斜率. 4.已知曲線C:x24+y29=1,直線l:x=2+t,y=2-2t(t為參數(shù)).

3、(1)寫出曲線C的參數(shù)方程,直線l的普通方程; (2)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值. 5.在極坐標系中,曲線C:ρ=2acos θ(a>0),l:ρcosθ-π3=32,C與l有且只有一個公共點. (1)求a; (2)O為極點,A,B為C上的兩點,且∠AOB=π3,求|OA|+|OB|的最大值. 6.在直角坐標系xOy中,曲線C1的參數(shù)方程為x=acost,y=1+asint(t為參數(shù),a>0).在以坐標原點為極點,x軸正半軸為

4、極軸的極坐標系中,曲線C2:ρ=4cos θ. (1)說明C1是哪一種曲線,并將C1的方程化為極坐標方程; (2)直線C3的極坐標方程為θ=α0,其中α0滿足tan α0=2,若曲線C1與C2的公共點都在C3上,求a. 7.在極坐標系中,曲線C的極坐標方程為ρsin2θ-cos θ=0,點M1,π2.以極點O為原點,以極軸為x軸正半軸建立直角坐標系.斜率為-1的直線l過點M,且與曲線C交于A,B兩點. (1)求出曲線C的直角坐標方程和直線l的參數(shù)方程; (2)求點M到A,B兩點的距離之積.

5、 思維提升訓練 8.在平面直角坐標系xOy中,直線l的參數(shù)方程為x=3+12t,y=32t(t為參數(shù)),以原點為極點,x軸正半軸為極軸建立極坐標系,☉C的極坐標方程為ρ=23sin θ. (1)寫出☉C的直角坐標方程; (2)P為直線l上一動點,當點P到圓心C的距離最小時,求P的直角坐標. 9.已知直線l的參數(shù)方程為x=1+2t,y=2t(t為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程是ρ=sinθ1-sin2θ. (1)寫出直線l的極坐標方程與曲線C的直角坐標方程; (2)若點P是曲線C上的動點,求

6、點P到直線l的距離的最小值,并求出點P的坐標. 10.在平面直角坐標系xOy中,曲線C1的參數(shù)方程為x=3cosα,y=sinα(α為參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρsinθ+π4=42. (1)求曲線C1的普通方程與曲線C2的直角坐標方程; (2)設(shè)P為曲線C1上的動點,求點P到C2上點的距離的最小值,并求此時點P的坐標. 參考答案 專題能力訓練22 坐標系與參數(shù)方程(選修4—4) 能力突破訓練 1.解(1)消去參數(shù)t,得

7、到圓C的普通方程為(x-1)2+(y+2)2=9.由2ρsinθ-π4=m, 得ρsinθ-ρcosθ-m=0. 所以直線l的直角坐標方程為x-y+m=0. (2)依題意,圓心C到直線l的距離等于2, 即|1-(-2)+m|2=2,解得m=-3±22. 2.解直線l的普通方程為x-2y+8=0. 因為點P在曲線C上,設(shè)P(2s2,22s), 從而點P到直線l的距離d=|2s2-42s+8|12+(-2)2=2(s-2)2+45. 當s=2時,dmin=455. 因此當點P的坐標為(4,4)時,曲線C上點P到直線l的距離取到最小值455. 3.解(1)由x=ρcos

8、θ,y=ρsinθ可得圓C的極坐標方程ρ2+12ρcosθ+11=0. (2)在(1)中建立的極坐標系中,直線l的極坐標方程為θ=α(ρ∈R). 設(shè)A,B所對應(yīng)的極徑分別為ρ1,ρ2,將l的極坐標方程代入C的極坐標方程得ρ2+12ρcosα+11=0. 于是ρ1+ρ2=-12cosα,ρ1ρ2=11. |AB|=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2 =144cos2α-44. 由|AB|=10得cos2α=38,tanα=±153. 所以l的斜率為153或-153. 4.解(1)曲線C的參數(shù)方程為x=2cosθ,y=3sinθ(θ為參數(shù)). 直線l的普通方程

9、為2x+y-6=0. (2)曲線C上任意一點P(2cosθ,3sinθ)到l的距離為d=55|4cosθ+3sinθ-6|, 則|PA|=dsin30°=255|5sin(θ+α)-6|,其中α為銳角,且tanα=43. 當sin(θ+α)=-1時,|PA|取得最大值,最大值為2255. 當sin(θ+α)=1時,|PA|取得最小值,最小值為255. 5.解(1)曲線C是以(a,0)為圓心,以a為半徑的圓, l的直角坐標方程為x+3y-3=0. 由直線l與圓C相切可得|a-3|2=a,解得a=1. (2)不妨設(shè)A的極角為θ,B的極角為θ+π3, 則|OA|+|OB|

10、=2cosθ+2cosθ+π3 =3cosθ-3sinθ=23cosθ+π6, 當θ=-π6時,|OA|+|OB|取得最大值23. 6.解(1)消去參數(shù)t得到C1的普通方程x2+(y-1)2=a2,C1是以(0,1)為圓心,a為半徑的圓. 將x=ρcosθ,y=ρsinθ代入C1的普通方程中,得到C1的極坐標方程為ρ2-2ρsinθ+1-a2=0. (2)曲線C1,C2的公共點的極坐標滿足方程組ρ2-2ρsinθ+1-a2=0,ρ=4cosθ. 若ρ≠0,由方程組得16cos2θ-8sinθcosθ+1-a2=0, 由已知tanθ=2,可得16cos2θ-8sinθcosθ=0,

11、 從而1-a2=0,解得a=-1(舍去),a=1. a=1時,極點也為C1,C2的公共點,在C3上, 所以a=1. 7.解(1)x=ρcosθ,y=ρsinθ, 由ρsin2θ-cosθ=0,得ρ2sin2θ=ρcosθ. 所以y2=x即為曲線C的直角坐標方程. 點M的直角坐標為(0,1), 直線l的傾斜角為3π4,故直線l的參數(shù)方程為 x=tcos3π4,y=1+tsin3π4(t為參數(shù)), 即x=-22t,y=1+22t(t為參數(shù)). (2)把直線l的參數(shù)方程x=-22t,y=1+22t(t為參數(shù))代入曲線C的方程得 1+22t2=-22t,即t2+32t+2=0,

12、 Δ=(32)2-4×2=10>0. 設(shè)A,B對應(yīng)的參數(shù)分別為t1,t2, 則t1+t2=-32,t1·t2=2. 又直線l經(jīng)過點M,故由t的幾何意義得 點M到A,B兩點的距離之積 |MA|·|MB|=|t1||t2|=|t1·t2|=2. 思維提升訓練 8.解(1)由ρ=23sinθ,得ρ2=23ρsinθ, 從而有x2+y2=23y,所以x2+(y-3)2=3. (2)設(shè)P3+12t,32t,又C(0,3), 則|PC|=3+12t2+32t-32=t2+12, 故當t=0時,|PC|取得最小值, 此時,點P的直角坐標

13、為(3,0). 9.解(1)由x=1+2t,y=2t,得x-y=1, 故直線的極坐標方程為ρcosθ-ρsinθ=1, 即2ρcosθcosπ4-sinθsinπ4=1, 即2ρcosθ+π4=1. ∵ρ=sinθ1-sin2θ,∴ρ=sinθcos2θ, ∴ρcos2θ=sinθ,∴(ρcosθ)2=ρsinθ, 即曲線C的直角坐標方程為y=x2. (2)設(shè)P(x0,y0),y0=x02,則P到直線l的距離d=|x0-y0-1|2=|x0-x02-1|2=-x0-122-342=x0-122+342. ∴當x0=12時,dmin=328,此時P12,14. ∴當點P的坐標

14、為12,14時,P到直線l的距離最小,最小值為328. 10.解(1)由曲線C1:x=3cosα,y=sinα(α為參數(shù)),得 x3=cosα,y=sinα(α為參數(shù)), 兩式兩邊平方相加,得x32+y2=1, 即曲線C1的普通方程為x23+y2=1. 由曲線C2:ρsinθ+π4=42,得 22ρ(sinθ+cosθ)=42, 即ρsinθ+ρcosθ=8,所以x+y-8=0, 即曲線C2的直角坐標方程為x+y-8=0. (2)由(1)知,橢圓C1與直線C2無公共點,橢圓上的點P(3cosα,sinα)到直線x+y-8=0的距離d=|3cosα+sinα-8|2=2sinα+π3-82, 所以當sinα+π3=1時,d的最小值為32,此時點P的坐標為32,12.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!