(江蘇專版)2019年高考數(shù)學一輪復習 專題2.4 函數(shù)圖像(講).doc
《(江蘇專版)2019年高考數(shù)學一輪復習 專題2.4 函數(shù)圖像(講).doc》由會員分享,可在線閱讀,更多相關《(江蘇專版)2019年高考數(shù)學一輪復習 專題2.4 函數(shù)圖像(講).doc(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
專題2.4 函數(shù)圖像 【考綱解讀】 內(nèi) 容 要 求 備注 A B C 函數(shù)概念與基本初等函數(shù)Ⅰ 函數(shù)的圖像 √ 1.掌握作函數(shù)圖像的兩種基本方法:描點法和圖像變換法. 2.了解圖像的平移變換、伸縮變換、對稱變換,能利用函數(shù)的圖像研究函數(shù)的性質(zhì),以達到識圖、作圖、用圖的目的. 【直擊教材】 1.函數(shù)y=5x與函數(shù)y=-的圖象關于________對稱. 【答案】原點 2.將函數(shù)y=f(-x)的圖象向右平移1個單位得到函數(shù)________的圖象. 【答案】y=f(-x+1) 3.把函數(shù)y=f(2x)的圖象向右平移________個單位得到函數(shù)y=f(2x-3)的圖象. 【答案】 【知識清單】 1 作函數(shù)的圖像 利用圖像變換法作函數(shù)的圖像 (1)平移變換: y=f(x)y=f(x-a); y=f(x)y=f(x)+b. (2)伸縮變換: y=f(x) y=f(ωx); y=f(x)y=Af(x). (3)對稱變換: y=f(x) y=-f(x); y=f(x)y=f(-x); y=f(x)y=-f(-x). (4)翻折變換: y=f(x)y=f(|x|); y=f(x)y=|f(x)|. 2 函數(shù)圖像的應用 圖像的應用常見的命題角度有:(1)確定方程根的個數(shù);(2)求參數(shù)的取值范圍; (3)求不等式的解集. 【考點深度剖析】 高考對函數(shù)圖像的考查形式多樣,命題形式主要有由函數(shù)的性質(zhì)及解析式、選圖;由函數(shù)的圖像來研究函數(shù)的性質(zhì)、圖像的變換、數(shù)形結合解決問題等,其重點是基本初等函數(shù)的圖像以及函數(shù)的性質(zhì)在圖像上的直觀體現(xiàn). 【重點難點突破】 考點1 作函數(shù)的圖像 【1-1】(1)y=|lg x|(2)y=2x+2;(3)y=x2-2|x|-1. 【答案】見下圖 【1-2】函數(shù)f(x)=ln x的圖像與函數(shù)g(x)=x2-4x+4的圖像的交點個數(shù)為______. 【答案】2 【解析】作出函數(shù)f(x)=ln x,g(x)=x2-4x+4的圖像如圖所示 可知,其交點個數(shù)為2. 【思想方法】 畫函數(shù)圖像的一般方法 (1)直接法.當函數(shù)表達式(或變形后的表達式)是熟悉的基本函數(shù)時,就可根據(jù)這些函數(shù)的特征直接作出; (2)圖像變換法.若函數(shù)圖像可由某個基本函數(shù)的圖像經(jīng)過平移、翻折、對稱得到,可利用圖像變換作出, 【溫馨提醒】注意平移變換與伸縮變換的順序?qū)ψ儞Q單位及解析式的影響. 1已知函數(shù)f(x)=loga(x+b)(a>0且a≠1,b∈R)的圖象如圖所示,則a+b的值是________. 【答案】 【解析】由圖象可知,函數(shù)過點(-3,0),(0,-2),所以得解得故a+b=. 2.已知y=f(x)的圖象如圖所示,則f(x)的值域為________. 【答案】(-∞,-1]∪(1,3) 【解析】由圖象易知f(x)的值域為(-∞,-1]∪(1,3). [由題悟法] 識圖3種常用的方法 [即時應用] 1. 已知函數(shù)f(x)的圖象如圖所示,則函數(shù)g(x)=logf(x)的定義域是________. 【答案】(2,8] 【解析】當f(x)>0時,函數(shù)g(x)=logf(x)有意義,由函數(shù)f(x)的圖象知滿足f(x)>0時,x∈(2,8]. 2. 如圖,函數(shù)f(x)的圖象是曲線OAB,其中點O,A,B的坐標分別為(0,0),(1,2),(3,1),則f=________. 【答案】2 【解析】由圖象知f(3)=1,所以=1,所以f=f(1)=2. 角度一:研究函數(shù)的性質(zhì) 1.已知函數(shù)f(x)=|x2-4x+3|. (1)求函數(shù)f(x)的單調(diào)區(qū)間,并指出其增減性; (2)求集合M={m|使方程f(x)=m有四個不相等的實根}. 解:f (x)= 角度二:求參數(shù)的值或取值范圍 2.在平面直角坐標系xOy中,若直線y=2a與函數(shù)y=|x-a|-1的圖象只有一個交點,則a的值為________. 【答案】- 【解析】函數(shù)y=|x-a|-1的圖象如圖所示,因為直線y=2a與函數(shù)y=|x-a|-1的圖象只有一個交點,故2a=-1,解得a=-. 角度三:求不等式的解集 3. 如圖,函數(shù)f(x)的圖象為折線ACB,則不等式f(x)≥log2(x+1)的解集是________. 【答案】{x|-1- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 江蘇專版2019年高考數(shù)學一輪復習 專題2.4 函數(shù)圖像講 江蘇 專版 2019 年高 數(shù)學 一輪 復習 專題 2.4 函數(shù) 圖像
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://zhongcaozhi.com.cn/p-3944437.html