《安徽省長豐縣高中數(shù)學(xué) 第三章 導(dǎo)數(shù)及其應(yīng)用 3.3 導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用 3.3.1 函數(shù)的單調(diào)性與導(dǎo)數(shù)教案 新人教A版選修11》由會(huì)員分享,可在線閱讀,更多相關(guān)《安徽省長豐縣高中數(shù)學(xué) 第三章 導(dǎo)數(shù)及其應(yīng)用 3.3 導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用 3.3.1 函數(shù)的單調(diào)性與導(dǎo)數(shù)教案 新人教A版選修11(9頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
3.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)
項(xiàng)目
內(nèi)容
課題
(共 2 課時(shí))
修改與創(chuàng)新
教學(xué)
目標(biāo)
1.了解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系;
2.能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間,對(duì)多項(xiàng)式函數(shù)一般不超過三次。
教學(xué)重、
難點(diǎn)
教學(xué)重點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求不超過三次的多項(xiàng)式函數(shù)的單調(diào)區(qū)間
教學(xué)難點(diǎn): 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求不超過三次的多項(xiàng)式函數(shù)的單調(diào)區(qū)間
教學(xué)
準(zhǔn)備
多媒體課件
教學(xué)過程
一、導(dǎo)入新課:
函數(shù)是客觀描述世界變化規(guī)律的重要數(shù)學(xué)模型,研究函數(shù)時(shí),了解函數(shù)的贈(zèng)與減、增減的快與慢以及函數(shù)的最大值
2、或最小值等性質(zhì)是非常重要的.通過研究函數(shù)的這些性質(zhì),我們可以對(duì)數(shù)量的變化規(guī)律有一個(gè)基本的了解.下面,我們運(yùn)用導(dǎo)數(shù)研究函數(shù)的性質(zhì),從中體會(huì)導(dǎo)數(shù)在研究函數(shù)中的作用.
二、講授新課:
1.問題:圖3. 3-1(1),它表示跳水運(yùn)動(dòng)中高度隨時(shí)間變化的函數(shù)的圖像,圖3.3-1(2)表示高臺(tái)跳水運(yùn)動(dòng)員的速度隨時(shí)間變化的函數(shù)的圖像.
運(yùn)動(dòng)員從起跳到最高點(diǎn),以及從最高點(diǎn)到入水這兩段時(shí)間的運(yùn)動(dòng)狀態(tài)有什么區(qū)別?
通過觀察圖像,我們可以發(fā)現(xiàn):
(1) 運(yùn)動(dòng)員從起點(diǎn)到最高點(diǎn),離水面的高度隨時(shí)間的增加而增加,即是增函數(shù).相應(yīng)地,.
(2) 從最高點(diǎn)到入水,運(yùn)動(dòng)員離水面的高度隨時(shí)間的增加而減少,即是減函數(shù)
3、.相應(yīng)地,.
2.函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系
觀察下面函數(shù)的圖像,探討函數(shù)的單調(diào)性與其導(dǎo)數(shù)正負(fù)的關(guān)系.
如圖3.3-3,導(dǎo)數(shù)表示函數(shù)在點(diǎn)處的切線的斜率.
在處,,切線是“左下右上”式的,這時(shí),函數(shù)在附近單調(diào)遞增;
在處,,切線是“左上右下”式的,這時(shí),函數(shù)在附近單調(diào)遞減.
結(jié)論:函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系
在某個(gè)區(qū)間內(nèi),如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞減.
說明:(1)特別的,如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)是常函數(shù).
3.
4、求解函數(shù)單調(diào)區(qū)間的步驟:
(1)確定函數(shù)的定義域;
(2)求導(dǎo)數(shù);
(3)解不等式,解集在定義域內(nèi)的部分為增區(qū)間;
(4)解不等式,解集在定義域內(nèi)的部分為減區(qū)間.
三.典例分析
例1.已知導(dǎo)函數(shù)的下列信息:
當(dāng)時(shí),;
當(dāng),或時(shí),;
當(dāng),或時(shí),
試畫出函數(shù)圖像的大致形狀.
解:當(dāng)時(shí),,可知在此區(qū)間內(nèi)單調(diào)遞增;
當(dāng),或時(shí),;可知在此區(qū)間內(nèi)單調(diào)遞減;
當(dāng),或時(shí),,這兩點(diǎn)比較特殊,我們把它稱為“臨界點(diǎn)”.
綜上,函數(shù)圖像的大致形狀如圖3.3-4所示.
例2.判斷下列函數(shù)的單調(diào)性,并求出單調(diào)區(qū)間.
(1); (2)
(3); (4)
解:(
5、1)因?yàn)?,所以?
因此,在R上單調(diào)遞增,如圖3.3-5(1)所示.
(2)因?yàn)椋裕?
當(dāng),即時(shí),函數(shù)單調(diào)遞增;
當(dāng),即時(shí),函數(shù)單調(diào)遞減;
函數(shù)的圖像如圖3.3-5(2)所示.
(3)因?yàn)?,所以?
因此,函數(shù)在單調(diào)遞減,如圖3.3-5(3)所示.
(4)因?yàn)?,所? .
當(dāng),即 時(shí),函數(shù) ;
當(dāng),即 時(shí),函數(shù) ;
函數(shù)的圖像如圖3.3-5(4)所示.
注:(3)、(4)生練
6、
例3.如圖3.3-6,水以常速(即單位時(shí)間內(nèi)注入水的體積相同)注入下面四種底面積相同的容器中,請(qǐng)分別找出與各容器對(duì)應(yīng)的水的高度與時(shí)間的函數(shù)關(guān)系圖像.
分析:以容器(2)為例,由于容器上細(xì)下粗,所以水以常速注入時(shí),開始階段高度增加得慢,以后高度增加得越來越快.反映在圖像上,(A)符合上述變化情況.同理可知其它三種容器的情況.
解:
思考:例3表明,通過函數(shù)圖像,不僅可以看出函數(shù)的增減,還可以看出其變化的快慢.結(jié)合圖像,你能從導(dǎo)數(shù)的角度解釋變化快慢的情況嗎?
一般的,如果一個(gè)函數(shù)在某一范圍內(nèi)導(dǎo)數(shù)的絕對(duì)值較大,那么函數(shù)在這個(gè)范圍內(nèi)變化的快,這時(shí),函數(shù)的圖像就
7、比較“陡峭”;反之,函數(shù)的圖像就“平緩”一些.
如圖3.3-7所示,函數(shù)在或內(nèi)的圖像“陡峭”,
在或內(nèi)的圖像“平緩”.
例4.求證:函數(shù)在區(qū)間內(nèi)是減函數(shù).
證明:因?yàn)?
當(dāng)即時(shí),,所以函數(shù)在區(qū)間內(nèi)是減函數(shù).
說明:證明可導(dǎo)函數(shù)在內(nèi)的單調(diào)性步驟:
(1)求導(dǎo)函數(shù);
(2)判斷在內(nèi)的符號(hào);
(3)做出結(jié)論:為增函數(shù),為減函數(shù).
例5.已知函數(shù) 在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.
解:,因?yàn)樵趨^(qū)間上是增函數(shù),所以對(duì)恒成立,即對(duì)恒成立,解之得:
所以實(shí)數(shù)的取值范圍為.
說明:已知函數(shù)的單調(diào)性求參數(shù)的取值范圍是一種常見的題型,常利用導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系:即“若函數(shù)單調(diào)遞增,則;
8、若函數(shù)單調(diào)遞減,則”來求解,注意此時(shí)公式中的等號(hào)不能省略,否則漏解.
例6.已知函數(shù)y=x+,試討論出此函數(shù)的單調(diào)區(qū)間.
解:y′=(x+)′
=1-1x-2=
令>0.
解得x>1或x<-1.
∴y=x+的單調(diào)增區(qū)間是(-∞,-1)和(1,+∞).
令<0,解得-1<x<0或0<x<1.
∴y=x+的單調(diào)減區(qū)間是(-1,0)和(0,1)
四.課堂練習(xí)
1.求下列函數(shù)的單調(diào)區(qū)間
1.f(x)=2x3-6x2+7 2.f(x)=+2x 3. f(x)=sinx , x 4. y=xlnx
2.課本 練習(xí)
課堂小結(jié):
(1)函數(shù)的單調(diào)性與
9、導(dǎo)數(shù)的關(guān)系
(2)求解函數(shù)單調(diào)區(qū)間
(3)證明可導(dǎo)函數(shù)在內(nèi)的單調(diào)性
布置作業(yè):
P98 1,2
板書設(shè)計(jì)
3.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)
1.函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系
在某個(gè)區(qū)間內(nèi),如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞減.
說明:(1)特別的,如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)是常函數(shù).
2.求解函數(shù)單調(diào)區(qū)間的步驟:
(1)確定函數(shù)的定義域;
(2)求導(dǎo)數(shù);
(3)解不等式,解集在定義域內(nèi)的部分為增區(qū)間;
(4)解不等式,解集在定義域內(nèi)的部分為減區(qū)間.
例1、例2、例3、
例4、例5、例6
教學(xué)反思
函數(shù)是客觀描述世界變化規(guī)律的重要數(shù)學(xué)模型,研究函數(shù)時(shí),了解函數(shù)的贈(zèng)與減、增減的快與慢以及函數(shù)的最大值或最小值等性質(zhì)是非常重要的.
利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性是非常有效的方法,因此,教師應(yīng)結(jié)合圖像,分析單調(diào)性與導(dǎo)數(shù)的關(guān)系,得出由導(dǎo)函數(shù)的正負(fù)判斷函數(shù)的單調(diào)性。在得出結(jié)論后要用一定量的例題和學(xué)習(xí),使學(xué)生熟練掌握這一結(jié)論和求解步驟。
我國經(jīng)濟(jì)發(fā)展進(jìn)入新常態(tài),需要轉(zhuǎn)變經(jīng)濟(jì)發(fā)展方式,改變粗放式增長模式,不斷優(yōu)化經(jīng)濟(jì)結(jié)構(gòu),實(shí)現(xiàn)經(jīng)濟(jì)健康可持續(xù)發(fā)展進(jìn)區(qū)域協(xié)調(diào)發(fā)展,推進(jìn)新型城鎮(zhèn)化,推動(dòng)城鄉(xiāng)發(fā)展一體化因:我國經(jīng)濟(jì)發(fā)展還面臨區(qū)域發(fā)展不平衡、城鎮(zhèn)化水平不高、城鄉(xiāng)發(fā)展不平衡不協(xié)調(diào)等現(xiàn)實(shí)挑戰(zhàn)。