《安徽省長(zhǎng)豐縣高中數(shù)學(xué) 第三章 導(dǎo)數(shù)及其應(yīng)用 3.3 導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用 3.3.2 函數(shù)的極值與導(dǎo)數(shù)教案 新人教A版選修11》由會(huì)員分享,可在線閱讀,更多相關(guān)《安徽省長(zhǎng)豐縣高中數(shù)學(xué) 第三章 導(dǎo)數(shù)及其應(yīng)用 3.3 導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用 3.3.2 函數(shù)的極值與導(dǎo)數(shù)教案 新人教A版選修11(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
3.3.2函數(shù)的極值與導(dǎo)數(shù)
項(xiàng)目
內(nèi)容
課題
(共 2 課時(shí))
修改與創(chuàng)新
教學(xué)
目標(biāo)
1.理解極大值、極小值的概念;
2.能夠運(yùn)用判別極大值、極小值的方法來(lái)求函數(shù)的極值;
3.掌握求可導(dǎo)函數(shù)的極值的步驟.
教學(xué)重、
難點(diǎn)
教學(xué)重點(diǎn):極大、極小值的概念和判別方法,以及求可導(dǎo)函數(shù)的極值的步驟.
教學(xué)難點(diǎn):對(duì)極大、極小值概念的理解及求可導(dǎo)函數(shù)的極值的步驟.
教學(xué)
準(zhǔn)備
多媒體課件
教學(xué)過(guò)程
一、導(dǎo)入新課:
觀察圖3.3-8,我們發(fā)現(xiàn),時(shí),高臺(tái)跳水運(yùn)動(dòng)員距水面高度最大.那么,函數(shù)在此點(diǎn)的導(dǎo)數(shù)是多少呢?此點(diǎn)附近的圖像有什么特點(diǎn)?相應(yīng)
2、地,導(dǎo)數(shù)的符號(hào)有什么變化規(guī)律?
放大附近函數(shù)的圖像,如圖3.3-9.可以看出;在,當(dāng)時(shí),函數(shù)單調(diào)遞增,;當(dāng)時(shí),函數(shù)單調(diào)遞減,;這就說(shuō)明,在附近,函數(shù)值先增(,)后減(,).這樣,當(dāng)在的附近從小到大經(jīng)過(guò)時(shí),先正后負(fù),且連續(xù)變化,于是有.
對(duì)于一般的函數(shù),是否也有這樣的性質(zhì)呢?
附:對(duì)極大、極小值概念的理解,可以結(jié)合圖象進(jìn)行說(shuō)明.并且要說(shuō)明函數(shù)的極值是就函數(shù)在某一點(diǎn)附近的小區(qū)間而言的. 從圖象觀察得出,判別極大、極小值的方法.判斷極值點(diǎn)的關(guān)鍵是這點(diǎn)兩側(cè)的導(dǎo)數(shù)異號(hào)
二、講授新課:
1.問(wèn)題:圖3.3-1(1),它表示跳水運(yùn)動(dòng)中高度隨時(shí)間變化的函數(shù)的圖像,圖3.3-1(2)表示高臺(tái)跳水運(yùn)
3、動(dòng)員的速度隨時(shí)間變化的函數(shù)的圖像.
運(yùn)動(dòng)員從起跳到最高點(diǎn),以及從最高點(diǎn)到入水這兩段時(shí)間的運(yùn)動(dòng)狀態(tài)有什么區(qū)別?
通過(guò)觀察圖像,我們可以發(fā)現(xiàn):
(1) 運(yùn)動(dòng)員從起點(diǎn)到最高點(diǎn),離水面的高度隨時(shí)間的增加而增加,即是增函數(shù).相應(yīng)地,.
(2) 從最高點(diǎn)到入水,運(yùn)動(dòng)員離水面的高度隨時(shí)間的增加而減少,即是減函數(shù).相應(yīng)地,.
2.函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系
觀察下面函數(shù)的圖像,探討函數(shù)的單調(diào)性與其導(dǎo)數(shù)正負(fù)的關(guān)系.
如圖3.3-3,導(dǎo)數(shù)表示函數(shù)在點(diǎn)處的切線的斜率.在處,,切線是“左下右上”式的,這時(shí),函數(shù)在附近單調(diào)遞增;在處,,切線是“左上右下”式的,這時(shí),函數(shù)在附近單調(diào)遞減.
結(jié)論:函數(shù)的單調(diào)性
4、與導(dǎo)數(shù)的關(guān)系
在某個(gè)區(qū)間內(nèi),如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞減.
說(shuō)明:(1)特別的,如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)是常函數(shù).
3.求解函數(shù)單調(diào)區(qū)間的步驟:
(1)確定函數(shù)的定義域;
(2)求導(dǎo)數(shù);
(3)解不等式,解集在定義域內(nèi)的部分為增區(qū)間;
(4)解不等式,解集在定義域內(nèi)的部分為減區(qū)間.
三.典例分析
例1.(課本例4)求的極值
解: 因?yàn)?,所?
。
下面分兩種情況討論:
(1)當(dāng)>0,即,或時(shí);
(2)當(dāng)<0,即時(shí).
當(dāng)x變化時(shí), ,的變化情況如下表:
-2
(-2,2)
2
+
0
-
5、
0
+
↗
極大值
↘
極小值
↗
因此,當(dāng)時(shí),有極大值,并且極大值為;
當(dāng)時(shí),有極小值,并且極小值為。
函數(shù)的圖像如圖所示。
例2求y=(x2-1)3+1的極值
解:y′=6x(x2-1)2=6x(x+1)2(x-1)2
令y′=0解得x1=-1,x2=0,x3=1
當(dāng)x變化時(shí),y′,y的變化情況如下表
-1
(-1,0)
0
(0,1)
1
-
0
-
0
+
0
+
↘
無(wú)極值
↘
極小值0
↗
無(wú)極值
↗
∴當(dāng)x=0時(shí),y有極小值且y極
6、小值=0
1.極大值: 一般地,設(shè)函數(shù)f(x)在點(diǎn)x0附近有定義,如果對(duì)x0附近的所有的點(diǎn),都有f(x)<f(x0),就說(shuō)f(x0)是函數(shù)f(x)的一個(gè)極大值,記作y極大值=f(x0),x0是極大值點(diǎn)
2.極小值:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對(duì)x0附近的所有的點(diǎn),都有f(x)>f(x0).就說(shuō)f(x0)是函數(shù)f(x)的一個(gè)極小值,記作y極小值=f(x0),x0是極小值點(diǎn)
3.極大值與極小值統(tǒng)稱(chēng)為極值注意以下幾點(diǎn):
(?。O值是一個(gè)局部概念由定義,極值只是某個(gè)點(diǎn)的函數(shù)值與它附近點(diǎn)的函數(shù)值比較是最大或最小并不意味著它在函數(shù)的整個(gè)的定義域內(nèi)最大或最小
(ⅱ)函數(shù)的極值不
7、是唯一的即一個(gè)函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值可以不止一個(gè)
(ⅲ)極大值與極小值之間無(wú)確定的大小關(guān)系即一個(gè)函數(shù)的極大值未必大于極小值,如下圖所示,是極大值點(diǎn),是極小值點(diǎn),而>
(ⅳ)函數(shù)的極值點(diǎn)一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點(diǎn)不能成為極值點(diǎn)
而使函數(shù)取得最大值、最小值的點(diǎn)可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點(diǎn)
4. 判別f(x0)是極大、極小值的方法:
若滿足,且在的兩側(cè)的導(dǎo)數(shù)異號(hào),則是的極值點(diǎn),是極值,并且如果在兩側(cè)滿足“左正右負(fù)”,則是的極大值點(diǎn),是極大值;如果在兩側(cè)滿足“左負(fù)右正”,則是的極小值點(diǎn),是極小值
5. 求可導(dǎo)函數(shù)f(x)的極值的步驟:
(1)確定函數(shù)的定
8、義區(qū)間,求導(dǎo)數(shù)f′(x)
(2)求方程f′(x)=0的根
(3)用函數(shù)的導(dǎo)數(shù)為0的點(diǎn),順次將函數(shù)的定義區(qū)間分成若干小開(kāi)區(qū)間,并列成表格.檢查f′(x)在方程根左右的值的符號(hào),如果左正右負(fù),那么f(x)在這個(gè)根處取得極大值;如果左負(fù)右正,那么f(x)在這個(gè)根處取得極小值;如果左右不改變符號(hào)即都為正或都為負(fù),那么f(x)在這個(gè)根處無(wú)極值
如果函數(shù)在某些點(diǎn)處連續(xù)但不可導(dǎo),也需要考慮這些點(diǎn)是否是極值點(diǎn)
四、鞏固練習(xí):
1.求下列函數(shù)的極值.
(1)y=x2-7x+6 (2)y=x3-27x
(1)解:y′=(x2-7x+6)′=2x-7
令y′=0,解得x=.
當(dāng)x變化時(shí),
9、y′,y的變化情況如下表.
-
0
+
↘
極小值
↗
∴當(dāng)x=時(shí),y有極小值,且y極小值=-.
(2)解:y′=(x3-27x)′=3x2-27=3(x+3)(x-3)
令y′=0,解得x1=-3,x2=3.
當(dāng)x變化時(shí),y′,y的變化情況如下表.
-3
(-3,3)
3
+
0
-
0
+
↗
極大值54
↘
極小值-54
↗
∴當(dāng)x=-3時(shí),y有極大值,且y極大值=54.
當(dāng)x=3時(shí),y有極小值,且y極小值=-54
課堂小結(jié):
函數(shù)的極大、極小值的定義以及判別方法.求可導(dǎo)函數(shù)f(x)的極
10、值的三個(gè)步驟.還有要弄清函數(shù)的極值是就函數(shù)在某一點(diǎn)附近的小區(qū)間而言的,在整個(gè)定義區(qū)間可能有多個(gè)極值,且要在這點(diǎn)處連續(xù).可導(dǎo)函數(shù)極值點(diǎn)的導(dǎo)數(shù)為0,但導(dǎo)數(shù)為零的點(diǎn)不一定是極值點(diǎn),要看這點(diǎn)兩側(cè)的導(dǎo)數(shù)是否異號(hào).函數(shù)的不可導(dǎo)點(diǎn)可能是極值點(diǎn)
布置作業(yè):
P98—99 4,5
板書(shū)設(shè)計(jì)
3. 3.2函數(shù)的極值與導(dǎo)數(shù)
1. 極大值與極小值的概念
2. 判別f(x0)是極大、極小值的方法
3. 求可導(dǎo)函數(shù)f(x)的極值的步驟:
(1)確定函數(shù)的定義區(qū)間,求導(dǎo)數(shù)f′(x)
(2)求方程f′(x)=0的根
(3)用函數(shù)的導(dǎo)數(shù)為0的點(diǎn),順次將函數(shù)的定義區(qū)間分成若干小開(kāi)區(qū)間,并列成表格
11、.檢查f′(x)在方程根左右的值的符號(hào),如果左正右負(fù),那么f(x)在這個(gè)根處取得極大值;如果左負(fù)右正,那么f(x)在這個(gè)根處取得極小值;如果左右不改變符號(hào)即都為正或都為負(fù),那么f(x)在這個(gè)根處無(wú)極值。
例1、例2
教學(xué)反思
在給出極值概念后,要比較、區(qū)分極值與最值的關(guān)系與區(qū)別,求極值時(shí)一定要學(xué)生注意判斷在導(dǎo)數(shù)為0的點(diǎn)的兩側(cè)的符號(hào),只有導(dǎo)函數(shù)異號(hào)時(shí),相的點(diǎn)才是極值點(diǎn)。
利用導(dǎo)數(shù)求極值是導(dǎo)數(shù)的重要應(yīng)用,要補(bǔ)充一定量的練習(xí)讓學(xué)生熟練掌握。對(duì)函數(shù)的不可導(dǎo)點(diǎn)可能是極值點(diǎn)不做要求。
我國(guó)經(jīng)濟(jì)發(fā)展進(jìn)入新常態(tài),需要轉(zhuǎn)變經(jīng)濟(jì)發(fā)展方式,改變粗放式增長(zhǎng)模式,不斷優(yōu)化經(jīng)濟(jì)結(jié)構(gòu),實(shí)現(xiàn)經(jīng)濟(jì)健康可持續(xù)發(fā)展進(jìn)區(qū)域協(xié)調(diào)發(fā)展,推進(jìn)新型城鎮(zhèn)化,推動(dòng)城鄉(xiāng)發(fā)展一體化因:我國(guó)經(jīng)濟(jì)發(fā)展還面臨區(qū)域發(fā)展不平衡、城鎮(zhèn)化水平不高、城鄉(xiāng)發(fā)展不平衡不協(xié)調(diào)等現(xiàn)實(shí)挑戰(zhàn)。