2019年高中數(shù)學(xué) 2.2 幾種常見的平面變換綜合檢測 蘇教版選修4-2.doc
《2019年高中數(shù)學(xué) 2.2 幾種常見的平面變換綜合檢測 蘇教版選修4-2.doc》由會員分享,可在線閱讀,更多相關(guān)《2019年高中數(shù)學(xué) 2.2 幾種常見的平面變換綜合檢測 蘇教版選修4-2.doc(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019年高中數(shù)學(xué) 2.2 幾種常見的平面變換綜合檢測 蘇教版選修4-2 1.在平面直角坐標系xOy中,設(shè)橢圓4x2+y2=1在矩陣A=對應(yīng)的變換下得到曲線F,求F的方程. 【解】 設(shè)P(x0,y0)是橢圓上任意一點,點P(x0,y0)在矩陣A對應(yīng)的變換下變?yōu)辄cP′(x′0,y′0), 則==, 即∴ 又∵點P在橢圓上,代入得 +y′=1, 即x2+y2=1. ∴曲線F的方程為x2+y2=1. 2.若點A在矩陣M=對應(yīng)的變換作用下得到點為B(1,0),求α的值. 【解】 由題意知=, 所以 解得 從而可知,α=2kπ-,(k∈Z). 3.已知直線l與直線3x+5y+6=0平行,且過點(5,6),求矩陣將直線l變成了什么圖形?并寫出方程. 【解】 由已知得直線l的方程為3x+5y-45=0,設(shè)P(x,y)為l上的任意一點,點P在矩陣對應(yīng)的變換下對應(yīng)點P′(x′,y′). 則==, ∴∴代入3x+5y-45=0, 得3x′+25y′-45=0, ∴直線l變換成直線3x+25y-45=0. 4.求直線y=2x在矩陣確定的變換作用下得到的圖形的表達式. 【解】 設(shè)點(x,y)為直線y=2x上的任意一點,其在矩陣確定的變換作用下得到的點為(x′,y′),則→==,即所以將其代入y=2x,并整理得2x′-7y′=0,所以直線y=2x在矩陣確定的變換作用下得到的圖形的表達式是2x-7y=0. 5.切變變換矩陣把直線x+y=1變成什么幾何圖形? 【解】 設(shè)P(x,y)在該變換下的象為P′(x′,y′),則 ===,故所以切變變換矩陣把直線x+y=1變成與y軸平行的直線x=1. 6.若曲線x2+4xy+2y2=1在矩陣M=的作用下變換成曲線x2-2y2=1,求a、b的值. 【解】 設(shè)(x,y)為曲線x2+4xy+2y2=1上的任意一點,其在矩陣M的作用下變換成點(x′,y′),則(x′,y′)在曲線x2-2y2=1上,==,即將其代入x2-2y2=1,并整理,得(1-2b2)x2+(2a-4b)xy+(a2-2)y2=1,比較系數(shù)得解得 7.點(2,2x)在旋轉(zhuǎn)變換矩陣的作用下得到點(y,4),求x,y,m,n. 【解】 因為矩陣是旋轉(zhuǎn)變換矩陣, 所以m=-,n=. 由題意知=, 所以解得 8.二階矩陣M對應(yīng)的變換T將點(1,-1),(-2,1)均變?yōu)辄c(1,1). (1)求矩陣M; (2)直線l:2x+3y+1=0在變換T作用下得到什么圖形?說明理由. 【解】 (1)設(shè)M=,則由題設(shè)得 =,且=, 即解得 所以M=. (2)設(shè)P(x,y)是l:2x+3y+1=0上任一點P′(x′,y′)是對應(yīng)的點,則由 ==, 得即2x+3y=-x′=-y′. 又2x+3y+1=0,所以x′=y(tǒng)′=1. 故在l在變換T作用下變?yōu)辄c(1,1). 9.求直線y=-2x+1繞原點逆時針旋轉(zhuǎn)45后所得的直線方程. 【解】 =. 設(shè)直線y=-2x+1上任意一點為(x0,y0),其在旋轉(zhuǎn)變換作用下得到點(x′0,y′0),則=, 即 解得 因為點(x0,y0)在直線y=-2x+1上,所以2x0+y0-1=0,所以2(x′0+y′0)-(x′0-y′0)-1=0,整理得x′0+y′0-1=0. 所以直線y=-2x+1繞原點逆時針旋轉(zhuǎn)45后所得的直線的方程是x+y-1=0. 10.如圖所示的是一個含有60角的菱形ABCD,要使只變換其四個頂點中的兩個頂點后,菱形變?yōu)檎叫?,求此變換對應(yīng)的變換矩陣M.該變換矩陣惟一嗎?若不惟一,寫出所有滿足條件的變換矩陣. 【解】 由題設(shè)知AC∶BD=∶1.若只變換A,C兩個頂點,則應(yīng)把A,C兩個頂點的橫坐標壓縮為原來的,縱坐標不變,于是變換矩陣為M=;若只變換B,D兩個頂點,則應(yīng)把B,D兩個頂點的縱坐標伸長為原來的倍,橫坐標不變,于是變換矩陣為M=.所以滿足條件的變換矩陣M為或.- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019年高中數(shù)學(xué) 2.2 幾種常見的平面變換綜合檢測 蘇教版選修4-2 2019 年高 數(shù)學(xué) 常見 平面 變換 綜合 檢測 蘇教版 選修
鏈接地址:http://zhongcaozhi.com.cn/p-3227762.html