《(全國通用)高考數(shù)學(xué)大一輪復(fù)習(xí) 第十一章 計數(shù)原理、概率、隨機(jī)變量及其分布 第2節(jié) 排列與組合課件 理 新人教B》由會員分享,可在線閱讀,更多相關(guān)《(全國通用)高考數(shù)學(xué)大一輪復(fù)習(xí) 第十一章 計數(shù)原理、概率、隨機(jī)變量及其分布 第2節(jié) 排列與組合課件 理 新人教B(33頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第第2節(jié)排列與組合節(jié)排列與組合最新考綱1.理解排列、組合的概念;2.能利用計數(shù)原理推導(dǎo)排列數(shù)公式、組合數(shù)公式;3.能解決簡單的實(shí)際問題.1.排列與組合的概念知知 識識 梳梳 理理名稱定義排列從n個不同元素中取出m(mn)個不同元素按照_排成一列合成一組組合一定的順序2.排列數(shù)與組合數(shù)(1)從n個不同元素中取出m(mn)個元素的所有排列的個數(shù),叫做從n個不同元素中取出m個元素的排列數(shù).(2)從n個不同元素中取出m(mn)個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù).3.排列數(shù)、組合數(shù)的公式及性質(zhì)n(n1)(n2)(nm1)1n!常用結(jié)論與微點(diǎn)提醒1.解受條件限制的排列、組合題
2、,通常有直接法(合理分類)和間接法(排除法).分類時標(biāo)準(zhǔn)應(yīng)統(tǒng)一,避免出現(xiàn)重復(fù)或遺漏.2.對于分配問題,一般先分組,再分配,注意平均分組與不平均分組的區(qū)別,避免重復(fù)或遺漏.診診 斷斷 自自 測測答案(1)(2)(3)(4)2.從4本不同的課外讀物中,買3本送給3名同學(xué),每人各1本,則不同的送法種數(shù)是()A.12 B.24 C.64 D.81答案B3.(一題多解)(教材練習(xí)改編)從4名男同學(xué)和3名女同學(xué)中選出3名參加某項(xiàng)活動,則男女生都有的選法種數(shù)是()A.18 B.24 C.30 D.36答案C4.用數(shù)字1,2,3,4,5組成的無重復(fù)數(shù)字的四位偶數(shù)的個數(shù)為()A.8 B.24 C.48 D.12
3、0答案C5.在一展覽會上,要展出5件藝術(shù)作品,其中不同書法作品2件、不同繪畫作品2件、標(biāo)志性建筑設(shè)計1件,在展臺上將這5件作品排成一排,要求2件書法作品必須相鄰,2件繪畫作品不能相鄰,則該次展出這5件作品不同的擺放方案共有_種(用數(shù)字作答).答案24考點(diǎn)一排列問題考點(diǎn)一排列問題【例1】 有3名男生、4名女生,在下列不同條件下,求不同的排列方法總數(shù).(1)選5人排成一排;(2)排成前后兩排,前排3人,后排4人;(3)(一題多解)全體排成一排,甲不站排頭也不站排尾;(4)全體排成一排,女生必須站在一起;(5)全體排成一排,男生互不相鄰.規(guī)律方法排列應(yīng)用問題的分類與解法(1)對于有限制條件的排列問題
4、,分析問題時有位置分析法、元素分析法,在實(shí)際進(jìn)行排列時一般采用特殊元素優(yōu)先原則,即先安排有限制條件的元素或有限制條件的位置,對于分類過多的問題可以采用間接法.(2)對相鄰問題采用捆綁法、不相鄰問題采用插空法、定序問題采用倍縮法是解決有限制條件的排列問題的常用方法.【訓(xùn)練1】 (1)(2018赤峰二模)7人站成兩排隊(duì)列,前排3人,后排4人,現(xiàn)將甲、乙、丙三人加入隊(duì)列,前排加一人,后排加兩人,其他人保持相對位置不變,則不同的加入方法種數(shù)為()A.120 B.240 C.360 D.480(2)(2018撫順模擬)某班準(zhǔn)備從甲、乙等七人中選派四人發(fā)言,要求甲、乙兩人至少有一人參加,那么不同的發(fā)言順序
5、有()A.30 B.600 C.720 D.840解析(1)第一步,從甲、乙、丙三人選一個加到前排,有3種,第二步,前排3人形成了4個空,任選一個空加一人,有4種,第三步,后排4人形成了5個空,任選一個空加一人有5種,此時形成6個空,任選一個空加一人,有6種,根據(jù)分步計數(shù)原理有3456360種方法.答案(1)C(2)C考點(diǎn)二組合問題考點(diǎn)二組合問題【例2】 某市工商局對35種商品進(jìn)行抽樣檢查,已知其中有15種假貨.現(xiàn)從35種商品中選取3種.(1)其中某一種假貨必須在內(nèi),不同的取法有多少種?(2)其中某一種假貨不能在內(nèi),不同的取法有多少種?(3)恰有2種假貨在內(nèi),不同的取法有多少種?(4)至少有2
6、種假貨在內(nèi),不同的取法有多少種?(5)至多有2種假貨在內(nèi),不同的取法有多少種?規(guī)律方法組合問題常有以下兩類題型變化:(1)“含有”或“不含有”某些元素的組合題型:“含”,則先將這些元素取出,再由另外元素補(bǔ)足;“不含”,則先將這些元素剔除,再從剩下的元素中去選取.(2)“至少”或“至多”含有幾個元素的組合題型:解這類題必須十分重視“至少”與“至多”這兩個關(guān)鍵詞的含義,謹(jǐn)防重復(fù)與漏解.用直接法和間接法都可以求解,通常用直接法分類復(fù)雜時,考慮逆向思維,用間接法處理.【訓(xùn)練2】 (1)在爸爸去哪兒第二季第四期中,村長給6位“萌娃”布置一項(xiàng)搜尋空投食物的任務(wù).已知:食物投擲地點(diǎn)有遠(yuǎn)、近兩處;由于Grac
7、e年紀(jì)尚小,所以要么不參與該項(xiàng)任務(wù),但此時另需一位小孩在大本營陪同,要么參與搜尋近處投擲點(diǎn)的食物;所有參與搜尋任務(wù)的小孩須被均分成兩組,一組去遠(yuǎn)處,一組去近處,那么不同的搜尋方案有()A.80種 B.70種 C.40種 D.10種(2)(2018咸陽二模)若從1,2,3,9這9個整數(shù)中同時取4個不同的數(shù),其和為偶數(shù),則不同的取法共有()A.60種 B.63種 C.65種 D.66種答案(1)C(2)D考點(diǎn)三排列與組合的綜合應(yīng)用考點(diǎn)三排列與組合的綜合應(yīng)用(多維探究多維探究)命題角度命題角度1簡單的排列與組合應(yīng)用問題簡單的排列與組合應(yīng)用問題【例31】 (1)(2017全國卷)安排3名志愿者完成4項(xiàng)
8、工作,每人至少完成1項(xiàng),每項(xiàng)工作由1人完成,則不同的安排方式共有()A.12種 B.18種 C.24種 D.36種(2)從0,2中選一個數(shù)字,從1,3,5中選兩個數(shù)字,組成無重復(fù)數(shù)字的三位數(shù),其中奇數(shù)的個數(shù)為()A.24 B.18 C.12 D.6答案(1)D(2)B命題角度命題角度2分組、分配問題分組、分配問題【例32】 (1)某學(xué)校派出5名優(yōu)秀教師去邊遠(yuǎn)地區(qū)的三所中學(xué)進(jìn)行教學(xué)交流,每所中學(xué)至少派一名教師,則不同的分配方法有()A.80種 B.90種 C.120種 D.150種(2)國家教育部為了發(fā)展貧困地區(qū)教育,在全國重點(diǎn)師范大學(xué)免費(fèi)培養(yǎng)教育專業(yè)師范生,畢業(yè)后要分到相應(yīng)的地區(qū)任教,現(xiàn)有6個
9、免費(fèi)培養(yǎng)的教育專業(yè)師范畢業(yè)生要平均分到3所學(xué)校去任教,有_種不同的分派方法.答案(1)D(2)90規(guī)律方法(1)解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).對于排列組合的綜合題目,一般是將符合要求的元素取出或進(jìn)行分組,再對取出的元素或分好的組進(jìn)行排列.(2)不同元素的分配問題,往往是先分組再分配.在分組時,通常有三種類型不均勻分組;均勻分組;部分均勻分組,注意各種分組類型中,不同分組方法的差異.其次對于相同元素的“分配”問題,常用的方法是采用“隔板法”.【訓(xùn)練3】 (1)將2名教師,4名學(xué)生分成2個小組,分別安排到甲、乙兩地參加社會實(shí)踐活動,每個小組由1名教師和2名學(xué)生組成,不同的安排方案共有()A.12種 B.10種 C.9種 D.8種(2)(2018合肥聯(lián)考)若無重復(fù)數(shù)字的三位數(shù)滿足條件:個位數(shù)字與十位數(shù)字之和為奇數(shù),所有數(shù)位上的數(shù)字和為偶數(shù),則這樣的三位數(shù)的個數(shù)是()A.540 B.480 C.360 D.200答案(1)A(2)D