2019-2020年高中數(shù)學 1.3.3 全稱命題與特稱命題的否定二教案 北師大選修1-1.doc
《2019-2020年高中數(shù)學 1.3.3 全稱命題與特稱命題的否定二教案 北師大選修1-1.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學 1.3.3 全稱命題與特稱命題的否定二教案 北師大選修1-1.doc(2頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學 1.3.3 全稱命題與特稱命題的否定二教案 北師大選修1-1 教學過程 學生探究過程: 1.回顧 我們在上一節(jié)中學習過邏輯聯(lián)結(jié)詞“非”.對給定的命題p ,如何得到命題p 的否定(或非p ),它們的真假性之間有何聯(lián)系? 2.思考、分析 判斷下列命題是全稱命題還是特稱命題,你能寫出下列命題的否定嗎? (1)所有的矩形都是平行四邊形; (2)每一個素數(shù)都是奇數(shù); (3)"x∈R, x2-2x+1≥0。 (4)有些實數(shù)的絕對值是正數(shù); (5)某些平行四邊形是菱形; (6)$ x∈R, x2+1<0。 3.推理、判斷 你能發(fā)現(xiàn)這些命題和它們的否定在形式上有什么變化?(讓學生自己表述) 前三個命題都是全稱命題,即具有形式“”。 其中命題(1)的否定是“并非所有的矩形都是平行四邊形”,也就是說, 存在一個矩形不都是平行四邊形; 命題(2)的否定是“并非每一個素數(shù)都是奇數(shù);”,也就是說, 存在一個素數(shù)不是奇數(shù); 命題(3)的否定是“并非"x∈R, x2-2x+1≥0”,也就是說, $x∈R, x2-2x+1<0; 后三個命題都是特稱命題,即具有形式“”。 其中命題(4)的否定是“不存在一個實數(shù),它的絕對值是正數(shù)”,也就是說, 所有實數(shù)的絕對值都不是正數(shù); 命題(5)的否定是“沒有一個平行四邊形是菱形”,也就是說, 每一個平行四邊形都不是菱形; 命題(6)的否定是“不存在x∈R, x2+1<0”,也就是說, "x∈R, x2+1≥0; 4.發(fā)現(xiàn)、歸納 從命題的形式上看,前三個全稱命題的否定都變成了特稱命題。后三個特稱命題的否定都變成了全稱命題。 一般地,對于含有一個量詞的全稱命題的否定,有下面的結(jié)論: 全稱命題P: 它的否定¬P $x∈M,¬P(x) 特稱命題P: 它的否定¬P: "x∈M,¬P(x) 全稱命題和否定是特稱命題。特稱命題的否定是全稱命題。 5.鞏固練習 判斷下列命題是全稱命題還是特稱命題,并寫出它們的否定: (1) p:所有能被3整除的整數(shù)都是奇數(shù); (2) p:每一個四邊形的四個頂點共圓; (3) p:對"x∈Z,x2個位數(shù)字不等于3; (4) p:$ x∈R, x2+2x+2≤0; (5) p:有的三角形是等邊三角形; (6) p:有一個素數(shù)含三個正因數(shù)。 6.教學反思與作業(yè) (1)教學反思:如何寫出含有一個量詞的命題的否定,原先的命題與它的否定在形式上有什么變化? (2)作業(yè):P29習題1.4A組第3題:B組(1)(2)(3)(4)- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高中數(shù)學 1.3.3 全稱命題與特稱命題的否定二教案 北師大選修1-1 2019 2020 年高 數(shù)學 1.3 全稱 命題 否定 教案 北師大 選修
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://zhongcaozhi.com.cn/p-2748849.html