2019-2020年高考數學回歸課本 平面幾何教案 舊人教版.doc
《2019-2020年高考數學回歸課本 平面幾何教案 舊人教版.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高考數學回歸課本 平面幾何教案 舊人教版.doc(4頁珍藏版)》請在裝配圖網上搜索。
2019-2020年高考數學回歸課本 平面幾何教案 舊人教版 一、常用定理(僅給出定理,證明請讀者完成) 梅涅勞斯定理 設分別是ΔABC的三邊BC,CA,AB或其延長線上的點,若三點共線,則 梅涅勞斯定理的逆定理 條件同上,若則三點共線。 塞瓦定理 設分別是ΔABC的三邊BC,CA,AB或其延長線上的點,若三線平行或共點,則 塞瓦定理的逆定理 設分別是ΔABC的三邊BC,CA,AB或其延長線上的點,若則三線共點或互相平行。 角元形式的塞瓦定理 分別是ΔABC的三邊BC,CA,AB所在直線上的點,則平行或共點的充要條件是 廣義托勒密定理 設ABCD為任意凸四邊形,則AB?CD+BC?AD≥AC?BD,當且僅當A,B,C,D四點共圓時取等號。 斯特瓦特定理 設P為ΔABC的邊BC上任意一點,P不同于B,C,則有 AP2=AB2?+AC2?-BP?PC. 西姆松定理 過三角形外接圓上異于三角形頂點的任意一點作三邊的垂線,則三垂足共線。 西姆松定理的逆定理 若一點在三角形三邊所在直線上的射影共線,則該點在三角形的外接圓上。 九點圓定理 三角形三條高的垂足、三邊的中點以及垂心與頂點的三條連線段的中點,這九點共圓。 蒙日定理 三條根軸交于一點或互相平行。(到兩圓的冪(即切線長)相等的點構成集合為一條直線,這條直線稱根軸) 歐拉定理 ΔABC的外心O,垂心H,重心G三點共線,且 二、方法與例題 1.同一法。即不直接去證明,而是作出滿足條件的圖形或點,然后證明它與已知圖形或點重合。 例1 在ΔABC中,∠ABC=700,∠ACB=300,P,Q為ΔABC內部兩點,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求證:A,P,Q三點共線。 [證明] 設直線CP交AQ于P1,直線BP交AQ于P2,因為∠ACP=∠PCQ=100,所以,①在ΔABP,ΔBPQ,ΔABC中由正弦定理有 ,②,③④ 由②,③,④得。又因為P1,P2同在線段AQ上,所以P1,P2重合,又BP與CP僅有一個交點,所以P1,P2即為P,所以A,P,Q共線。 2.面積法。 例2 見圖16-1,◇ABCD中,E,F分別是CD,BC上的點,且BE=DF,BE交DF于P,求證:AP為∠BPD的平分線。 [證明] 設A點到BE,DF距離分別為h1,h2,則 又因為S◇ABCD=SΔADF,又BE=DF。 所以h1=h2,所以PA為∠BPD的平分線。 3.幾何變換。 例3 (蝴蝶定理)見圖16-2,AB是⊙O的一條弦,M為AB中點,CD,EF為過M的任意弦,CF,DE分別交AB于P,Q。求證:PM=MQ。 [證明] 由題設OMAB。不妨設。作D關于直線OM的對稱點。 連結,則要證PM=MQ,只需證,又∠MDQ=∠PFM,所以只需證F,P,M,共圓。 因為∠=1800-=1800-∠=1800-∠。(因為OM。AB//) 所以F,P,M,四點共圓。所以Δ≌ΔMDQ。所以MP=MQ。 例4 平面上每一點都以紅、藍兩色之一染色,證明:存在這樣的兩個相似三角形,它們的相似比為1995,而且每個三角形三個頂點同色。 [證明] 在平面上作兩個同心圓,半徑分別為1和1995,因為小圓上每一點都染以紅、藍兩色之一,所以小圓上必有五個點同色,設此五點為A,B,C,D,E,過這兩點作半徑并將半徑延長分別交大圓于A1,B1,C1,D1,E1,由抽屜原理知這五點中必有三點同色,不妨設為A1,B1,C1,則ΔABC與ΔA1B1C1都是頂點同色的三角形,且相似比為1995。 4.三角法。 例5 設AD,BE與CF為ΔABC的內角平分線,D,E,F在ΔABC的邊上,如果∠EDF=900,求∠BAC的所有可能的值。 [解] 見圖16-3,記∠ADE=α,∠EDC=β, 由題設∠FDA=-α,∠BDF=-β, 由正弦定理:, 得, 又由角平分線定理有,又,所以, 化簡得,同理,即 所以,所以sinβcosα-cosβsinα=sin(β-α)=0. 又-π<β-α<π,所以β=α。所以,所以A=π。 5.向量法。 例6 設P是ΔABC所在平面上的一點,G是ΔABC的重心,求證:PA+PB+PC>3PG. [證明] 因為 ,又G為ΔABC重心,所以 (事實上設AG交BC于E,則,所以) 所以,所以 又因為不全共線,上式“=”不能成立,所以PA+PB+PC>3PG。 6.解析法。 例7 H是ΔABC的垂心,P是任意一點,HLPA,交PA于L,交BC于X,HMPB,交PB于M,交CA于Y,HNPC交PC于N,交AB于Z,求證:X,Y,Z三點共線。 [解] 以H為原點,取不與條件中任何直線垂直的兩條直線為x軸和y軸,建立直角坐標系,用(xk,yk)表示點k對應的坐標,則直線PA的斜率為,直線HL斜率為,直線HL的方程為x(xP-xA)+y(yP-yA)=0. 又直線HA的斜率為,所以直線BC的斜率為,直線BC的方程為xxA+yyA=xAxB+yAyB,②又點C在直線BC上,所以xCxA+yCyA=xAxB+yAyB. 同理可得xBxC+yByC=xAxB+yAyB=xAxC+yAyC. 又因為X是BC與HL的交點,所以點X坐標滿足①式和②式,所以點X坐標滿足xxP+yyP=xAxB+yAyB.④同理點Y坐標滿足xxP+yyP=xBxC+yByC.⑤點Z坐標滿足xxP+yyP=xCxA+yCyA. 由③知④,⑤,⑥表示同一直線方程,故X,Y,Z三點共線。 7.四點共圓。 例8 見圖16-5,直線l與⊙O相離,P為l上任意一點,PA,PB為圓的兩條切線,A,B為切點,求證:直線AB過定點。 [證明] 過O作OCl于C,連結OA,OB,BC,OP,設OP交AB于M,則OPAB,又因為OAPA,OBPB,OCPC。 所以A,B,C都在以OP為直徑的圓上,即O,A,P,C,B五點共圓。 AB與OC是此圓兩條相交弦,設交點為Q, 又因為OPAB,OCCP, 所以P,M,Q,C四點共圓,所以OM?OP=OQ?OC。 由射影定理OA2=OM?OP,所以OA2=OQ?OC,所以OQ=(定值)。 所以Q為定點,即直線AB過定點。 三、習題精選 1.⊙O1和⊙O2分別是ΔABC的邊AB,AC上的旁切圓,⊙O1與CB,CA的延長線切于E,G,⊙O2與BC,BA的延長線切于F,H,直線EG與FH交于點P,求證:PABC。 2.設⊙O的外切四邊形ABCD的對角線AC,BD的中點分別為E,F,求證:E,O,F三點共線。 3.已知兩小圓⊙O1與⊙O2相外切且都與大圓⊙O相內切,AB是⊙O1與⊙O2的一條外公切線,A,B在⊙O上,CD是⊙O1與⊙O2的內公切線,⊙O1與⊙O2相切于點P,且P,C在直線AB的同一側,求證:P是ΔABC的內心。 4.ΔABC內有兩點M,N,使得∠MAB=∠NAC且∠MBA=∠NBC,求證: 5.ΔABC中,O為外心,三條高AD,BE,CF相交于點H,直線ED和AB相交于點M,直線FD和AC相交于點N,求證:(1)OBDF,OCDE;(2)OHMN。 6.設點I,H分別是銳角ΔABC的內心和垂心,點B1,C1分別是邊AC,AB的中點,已知射線B1I交邊AB于點B2(B2≠B),射線C1I交AC的延長線于點C2,B2C2與BC相交于點K,A1為ΔBHC的外心。試證:A,I,A1三點共線的充要條件是ΔBKB2和ΔCKC2的面積相等。 7.已知點A1,B1,C1,點A2,B2,C2,分別在直線l1,l2上 ,B2C1交B1C2于點M,C1A2交A1C2于點N,B1A2交B2A1于L。求證:M,N,L三點共線。 8.ΔABC中,∠C=900,∠A=300,BC=1,求ΔABC的內接三角形(三個頂點分別在三條邊上的三角形)的最長邊的最小值。 9.ΔABC的垂心為H,外心為O,外接圓半徑為R,頂點A,B,C關于對邊BC,CA,AB的對稱點分別為,求證:三點共線的充要條件是OH=2R。- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高考數學回歸課本 平面幾何教案 舊人教版 2019 2020 年高 數學 回歸 課本 平面幾何 教案 舊人
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://zhongcaozhi.com.cn/p-2673835.html