2019-2020年高中數(shù)學(xué)《余弦定理》教案1蘇教版必修5.doc
《2019-2020年高中數(shù)學(xué)《余弦定理》教案1蘇教版必修5.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)《余弦定理》教案1蘇教版必修5.doc(2頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)《余弦定理》教案1蘇教版必修5 知識(shí)網(wǎng)絡(luò) 三角形中的向量關(guān)系→余弦定理 學(xué)習(xí)要求 1. 掌握余弦定理及其證明; 2. 體會(huì)向量的工具性; 3. 能初步運(yùn)用余弦定理解斜三角形. 【課堂互動(dòng)】 自學(xué)評(píng)價(jià) 1.余弦定理: (1),______________________,______________________. (2) 變形:,___________________,___________________ . 2.利用余弦定理,可以解決以下兩類解斜三角形的問題: (1)_______________________________; (2)_______________________________. 【精典范例】 【例1】在中, (1)已知,,,求; (2)已知,,,求(精確到). 【解】 點(diǎn)評(píng): 利用余弦定理,可以解決以下兩類解斜三角形的問題:(1)已知三邊,求三個(gè)角;(2)已知兩邊和它們的夾角,求第三邊和其他兩個(gè)角. 聽課隨筆 【例2】兩地之間隔著一個(gè)水塘,現(xiàn)選擇另一點(diǎn),測 ,求兩地之間的距離(精確到). 【解】 【例3】用余弦定理證明:在中,當(dāng)為銳角時(shí),;當(dāng)為鈍角時(shí),. 【證】 點(diǎn)評(píng):余弦定理可以看做是勾股定理的推廣. 追蹤訓(xùn)練一 1.在△ABC中, (1)已知A=60,b=4,c=7, 求a; (2)已知a=7,b=5,c=3,求A. 2.若三條線段的長為5,6,7,則用這三條線段( ?。 。粒芙M成直角三角形 B.能組成銳角三角形 C.能組成鈍角三角形 D.不能組成三角形 3.在△ABC中,已知,試求∠C的大?。? 4.兩游艇自某地同時(shí)出發(fā),一艇以10km/h的速度向正北行駛,另一艇以7km/h的速度向北偏東45的方向行駛,問:經(jīng)過40min,兩艇相距多遠(yuǎn)? 【選修延伸】 【例4】在△ABC中,=,=,且,是方程的兩根,。 (1) 求角C的度數(shù); (2) 求的長; (3)求△ABC的面積。 【解】 聽課隨筆 【例5】在△ABC中,角A、B、C所對(duì)的邊分別為,,,證明: 。 追蹤訓(xùn)練二 1.在△ABC中,已知,,B=,則 ( ) A 2 B C D 2.在△ABC中,已知AB=5,AC=6,BC=,則A= ( ) A B C D 3.在△ABC中,若,,C=,則此三角形有 解。 4、 △ABC中,若, 則A= _______ . 【師生互動(dòng)】 學(xué)生質(zhì)疑 教師釋疑- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 余弦定理 2019 2020 年高 數(shù)學(xué) 余弦 定理 教案 蘇教版 必修
鏈接地址:http://zhongcaozhi.com.cn/p-2573854.html