喜歡這個資料需要的話就充值下載吧。。。資源目錄里展示的全都有預覽可以查看的噢,,下載就有,,請放心下載,原稿可自行編輯修改=【QQ:11970985 可咨詢交流】====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=【QQ:197216396 可咨詢交流】====================
畢 業(yè) 設 計(論 文)開題報告
設計(論文)題目: 冰露礦泉水瓶瓶蓋螺紋伺服脫模模具設計
學生姓名:
學 院:
專 業(yè):
班 級:
學 號:
指導教師:
年2月26日
開題報告填寫要求
1.開題報告(含“文獻綜述”)作為畢業(yè)設計(論文)答辯委員會對學生答辯資格審查的依據材料之一。此報告應在指導教師指導下,由學生在畢業(yè)設計(論文)工作前期內完成,經指導教師簽署意見、所在專業(yè)和學院審查后生效。
2.開題報告內容必須按教務處統(tǒng)一設計的電子文檔標準格式打印,禁止打印在其它紙上后剪貼,完成后應及時交給指導教師簽署意見。
3.“文獻綜述”應按論文的框架成文,并直接填寫在本開題報告第一欄目內,學生寫文獻綜述的參考文獻應不少于10篇(不包括辭典、手冊)。
4.有關年月日等日期的填寫,應當按照國標GB/T 7408—94《數據元和交換格式、信息交換、日期和時間表示法》規(guī)定的要求,一律用阿拉伯數字書寫。如“2015年6月26日”或“2015-06-26”。
5.開題報告(文獻綜述)字體請按宋體、小四號書寫,行間距1.5倍。
畢 業(yè) 設 計(論 文)開 題 報 告
1.結合畢業(yè)設計(論文)課題情況,根據所查閱的文獻資料,每人撰寫不少于1000字的文獻綜述:
1.注塑模具簡介
模具是工業(yè)生產中使用極為廣泛的基礎工藝裝備。在汽車、電機、儀表、電器、電子、通信、家電和輕工業(yè)等行業(yè)中,60%~80%的零件都依靠模具成形[1],并且隨著近年來這些行業(yè)的迅速發(fā)展,對模具的要求越來越高,結構也越來越復雜。用模具生產制件所表現出來的高精度、高復雜性、高一致性、高生產效率和低耗率,是其它加工制造方法所不能比擬的[2]。隨著塑料工業(yè)的飛速發(fā)展和通用塑料與工程塑料在強度和精度等方面的不斷提高,塑料制品的應用范圍也在不斷地擴大,越來越普遍地采用塑料成型。該方法適用于全部熱塑性塑料和部分熱固性塑料,制得的塑料制品數量之大是其它成型方法望塵莫及的[3]。作為注塑成型加工的主要工具之一注塑模具,在質量、精度、制造周期以及注塑成型過程中的生產效率等方面水平高低,直接影響產品的質量、產量、成本及產品的更新換代,同時也決定著企業(yè)在市場競爭中的反映能力和速度[4]。
由于注塑模具的使用特點,決定了模具設計也區(qū)別與其他行業(yè)。注塑模具設計要考慮的要點如下[5]:
1.塑件的物理力學性能,如強度、剛度、韌性、彈性、吸水性以及對應力的敏感性,不同塑料品種其性能各有所長,在設計塑件時應充分發(fā)揮其性能上的優(yōu)點,避免或補償其缺點。
2.塑料的成型工藝性,如流動性、成型收縮率的各向差異等。塑件形狀應有利于成型時充模、排氣、補縮,同時能使熱塑性塑料制品達到高效、均勻冷卻或使熱固性塑料制品均勻地固化。
3.塑件結構能使模具總體結構盡可能簡化,特別是避免側向分型抽芯機構和簡化脫模結構。使模具零件符合制造工藝的要求。
對于特殊用途的制品,還要考慮其光學性能、熱學性能、電性能、耐腐蝕性能等。
2.當前國內塑料模具發(fā)展概況及趨勢
目前,我國的模具制造技術已從過去只能制造簡單模具發(fā)展到可以制造大型、精密、復雜、長壽命的模具。在塑料模具方面[6],能設計制造汽車保險杠及整體儀表盤大型注射模。一些塑料模主要生產企業(yè)利用計算機輔助分析(CAE)技術對塑料注塑過程進行流動分析、冷卻分析、應力分析等,合理選擇澆口位置、尺寸、注塑工藝參數及冷卻系統(tǒng)的布置等,使模具設計方案進一步優(yōu)化,也縮短了模具設計和制造周期采用模具先進加工技術及設備,使模具制造能力大為提高。采用CAE技術[7],可以完全代替試模,CAE技術提供了從制品設計到生產的完整解決方案,在模具制造加工之前,在計算機上對整個注射成型過程進行模擬分析[8],準確預測熔體的填充、保壓、冷卻情況,以及制品中的應力分布、分子和纖維取向分布、制品的收縮和翹曲變形等情況,以便設計者能盡早發(fā)現問題,及時修改制件和模具設計,而不是等到試模以后再返修模具。這不僅是對傳統(tǒng)模具設計方法的一次突破[9],而且對減少甚至避免模具返修報廢、提高制品質量和降低成本等,都有著重大的技術經濟意義。某些國外電加工機床具有內容豐富、實用可靠的工藝數據和專家系統(tǒng),使模具的深槽窄縫加工、微細加工、鏡面加工等效率和質量大大提高。新的模糊控制系統(tǒng)具有加工反力的監(jiān)測和控制,提高了大面積加工的深度控制精度。電火花混粉加工技術的應用有效地提高了模具表面質量。模具逆向工程技術、快速經濟模具制造技術、三維掃描測量技術及數控模具雕刻機的發(fā)展與應用,對模具制造能力的提高也起到了很大作用[10]。我國經濟仍處于高速發(fā)展階段,國際上經濟全球化發(fā)展趨勢日趨明顯,這為我國模具工業(yè)高速發(fā)展提供了良好的條件和機遇。一方面,國內模具市場將繼續(xù)高速發(fā)展;另一方面,模具制造也逐漸向我國轉移以及跨國集團到我國進行模具采購趨向也十分明顯。
隨著計算機技術的發(fā)展應用,模具設計與制造技術正朝著數字化方向發(fā)展。特別是模具成型零件方面的軟件等[11],這些技術采用計算機輔助設計,進而將數據交換到加工制造設備,實現計算機輔助制造,或將設計與制造連成一體實現設計制造一體化。
3.參考文獻
[1]齊衛(wèi)東主編.塑料模具設計與制造.北京:高等教育出版社,2004
[2]鄧明主編.實用模具設計簡明手冊[M].第1版.北京:機械工業(yè)出版社,2010.1
[3]馮剛.我國注塑模具關鍵技術的研究與應用進展[J].塑料工業(yè)雜志社,2014.
[4]屈華昌,吳夢陵.塑料成型工藝與模具設計[M].北京:高等教育出版社,2014.
[5]付拴林,梁彥飛.注塑模具技術分析與發(fā)展展望[J].內燃機與配件,2018(01):108-109.
[6]張冠杰.注塑模具CAD/CAE/CAM技術研究[D].天津大學,2016.
[7]Changrong Chen,Yan Wang,Hengan Ou,et al.A review on remanufacture of dies and moulds[J].Journal of Cleaner Production,2014,64:14~23.
[8]禾子.制約我國模具行業(yè)快速發(fā)展的四大因素分析及未來展望[J].福建輕紡, 2014,18(01):26~28.
[9] 陳隆波,李國輝.淺析CAD/CAE/CAM常用軟件在注塑模具設計中的應用[J].黑龍科技信息,2017,(4):161.
[10]彭志榮.注塑模具的標準化及自動化設計[J].硅谷,2013,6(08):119-120
[11]韓永強,吳曉春.國內外塑料模具鋼研究現狀與發(fā)展趨勢[J].模具工業(yè),2018,44(09):1~7.
畢 業(yè) 設 計(論 文)開 題 報 告
2.本課題要研究的內容、解決的問題和擬采用的研究手段(途徑)等:
一、設計任務
1、完成礦泉水瓶蓋螺紋伺服脫模模具設計設計說明書;
2、完成礦泉水瓶蓋螺紋伺服脫模模具裝配圖和零件圖;
3、進行凹模零件圖進行機械加工工藝的編制;
二、設計思路
三、課題的重點難點
(1) 利用 UG 完成礦泉水瓶蓋模具結構的 3D設計;
(2) 側抽芯機構的設計,側抽芯結構設計時,為了使外側形狀滿足設計要求且結構簡單,如何設計方便脫模是關鍵
(3) 塑件內側有螺紋,在注射完成后如何脫模是本次課題的關鍵,能否強制脫模是需要考慮的問題;
(4)本次塑件應是大批量生產,如何排樣及設計澆注系統(tǒng)也是需要考慮的問題。
四、方案設計
1、根據零件畫出零件圖
2、成型零件的工藝分析
3、分型面及型腔數量的確定
4、澆注系統(tǒng)設計
5、成型零件設計
6、側抽芯機構設計;
7、導向零件的設計
8、排氣系統(tǒng)設計
9、模架的確定
五、任務進程
2019年12月18日-2019年12月20日指導教師下發(fā)任務書,師生見面討論、并當面給學生分配設計任務
2019年12月23日-2020年3月2日 學生搜集資料,提交開題報告及外文翻譯的初稿
2020年3月9日-2020年3月17日 提交開題報告、外文參考資料及譯文的定稿
2020年3月18日-2020年3月30日 進一步完善前期的各項材料,提交各項材料的定稿,開始準備畢業(yè)設計的課題研究
2020年4月1日- 2020年4月8日 進行畢業(yè)設計中期檢查,學生進行課題的設計、編程、安裝、調試
2020年4月9日- 2020年5月18日 學生進一步完善課題的設計、編程、安裝、調試,教師評閱學生畢業(yè)設計;學生準備畢業(yè)設計答辯
畢 業(yè) 設 計(論 文)開 題 報 告
指導教師意見:
1.對“文獻綜述”的評語:
對文獻了解較深刻,能完成畢業(yè)設計相關閱讀。
2.對本課題研究的思路、方法、對策、措施的預期成效等的評價:
研究方法思路清晰,方法得當。同意開題
3.是否同意開題:?同意 ?不同意
指導教師:
2020年2月27日
所在專業(yè)審查意見:
同意指導老師審核,同意開題,望嚴格按時按進程完成設計任務。
專業(yè)(系)負責人:
2020年2月29日
畢業(yè)設計(論文)評閱教師評閱表
題 目
冰露礦泉水瓶瓶蓋螺紋伺服脫模模具設計
學 生 姓 名
學 號
指 導 教 師
職 稱
高級工程師
學 歷
本科
評分指標(參考)
得分
1.理工類:設計(論文)方案合理性,理論分析充分性(5分)
文經管類:論文指導思想(5分)。
3.7
2.理工類:設計(論文)性能指標,實驗數據準確性,圖表、圖紙等數量與質量(5分)
文經管類:論文論據的充分性與正確性(5分)
3.6
3.設計(論文)創(chuàng)新性,成果的學術或應用價值(5分)
3.5
4.設計(論文)的結構、文字表達及書寫情況(5分)
4.0
評閱教師評分(滿分20分):
14.8
評閱教師評語:
論文分析冰露礦泉水瓶瓶蓋螺紋伺服脫模模具注塑成型工藝,制訂了注塑成型方案,完成了注塑成型模具的設計,制訂的工藝方案基本正確,模具結構基本合理,引用公式計算鎖模力基本正確,基本能綜合運用所學知識解決畢業(yè)設計給出的問題,任務量滿足畢設要求。
是否同意答辯:
評閱教師:
年5月13日
畢業(yè)設計(論文)選題、審題表
學 院
機械與電氣工程學院
出題教師
姓 名
專 業(yè)
材料成型及控制工程
職 稱
申報課題名稱
冰露礦泉水瓶瓶蓋螺紋伺服脫模模具設計
課題類型
£畢業(yè)設計(論文) R畢業(yè)設計 £畢業(yè)論文
課題性質
?A.理論研究類(理工) ?B.實驗研究類(理工) ?C.工程設計類(理工) ?D.軟件開發(fā)類(理工) ?E.專題類(文、經、管) ?F.論辯類(文、經、管) ?G.綜述類(文、經、管) ?H.綜合論文類(文、經、管) ?I.藝術研究類(藝術) ?J.藝術設計類(藝術) ?K.綜合藝術類(藝術) ?L.其他
課題來源
RA.結合社會生產實際 £B.教師課題 £C.自擬課題 £D.其他
課題簡介
主要指研究設計該課題的背景介紹及目的、意義。
塑料模具設計是目前市場上重要的塑料產品成形工藝,對于螺紋脫模方式也比較多,如何能夠更快更準確的 進行脫模是目前塑料模具重要方向,螺紋伺服脫模就是其中重要的一種方法。重點是了解伺服模塊的設計與選擇。
課題要求(包括應具備的條件)
主要指本課題技術方面的要求,而“條件”指從事該課題必須應具備的基本條件(如儀器設備、場地、文獻資料等)。
要求在了解塑料模具設計與制造工藝的基礎上,抓緊時間學習注塑成型原理,并了解注塑模具精度的保證問題。并且了解塑料瓶蓋使用要求,對塑料模具工作尺寸的計算一定要仔細全面,對注塑機的選擇合適并且對鎖模力等進行校核。模具成型零件工藝編制說明書上要表述詳盡。能完成隨身塑料瓶蓋塑料模具設計及制造;
工作量要求:
1、完成設計說明書一份;
2、完成塑料瓶蓋塑料模具設計及制造裝配圖和零件圖若干;
3、完成成型零件的工藝編制。
4、根據凹模零件圖進行機械加工工藝的編制,對其進行基于UGNX8.0的自動編程和加工,并生產后置程序;
5、總圖量:累加起來達到A0 2張;
課題預計
工作量大小
?大 ?適中 ?小
課題預計難易程度
?難 ?一般 ?易
所在專業(yè)審查意見:
同意
專業(yè)(系)負責人:
2019年12月11日
學院審查意見:
同意
學院負責人:
2019年12月12日
畢 業(yè) 設 計(論 文)任務書
設計(論文)題目: 冰露礦泉水瓶瓶蓋螺紋伺服脫模模具設計
學生姓名:
學 院: 機械與電氣工程學院
專 業(yè): 材料成型及控制工程
班 級:
學 號:
指導教師:
下發(fā)任務書日期: 年12月20日
任務書填寫要求
1.畢業(yè)設計(論文)任務書由指導教師根據各課題的具體情況填寫,經學生所在專業(yè)的負責人審查、學院領導簽字后生效。此任務書應在畢業(yè)設計(論文)開始前至少一周內填好并發(fā)給學生。
2.任務書內容必須按教務處統(tǒng)一設計的電子文檔標準格式(可從教務處網頁上下載)打印,要求正文小4號宋體,1.5倍行距,禁止打印在其它紙上剪貼。
3.任務書內填寫的內容,必須和學生畢業(yè)設計(論文)完成的情況相一致,若有變更,應當經過所在專業(yè)及學院主管領導審批后方可重新填寫。
4.任務書內有關“學院”、“專業(yè)”等名稱的填寫,應寫中文全稱,不能寫數字代碼。學生的“學號”要寫全號,不能只寫最后2位或1位數字。
5.任務書內“主要參考文獻”的填寫,應按照《三江學院畢業(yè)設計(論文)撰寫規(guī)范》的要求書寫。
6.有關年月日等日期的填寫,應當按照國標GB/T 7408—94《數據元和交換格式、信息交換、日期和時間表示法》規(guī)定的要求,一律用阿拉伯數字書寫。如“2015年6月26日”或“2015-06-26”。
畢 業(yè) 設 計(論 文)任 務 書
1.本畢業(yè)設計(論文)課題應達到的目的:
通過本次畢業(yè)設計,掌握注塑模具設計的基本方法,能夠完成簡單模具設計。學會設計過程遇到問題查閱手冊的方法,并能夠運用好計算機繪圖基本能力。初步接觸CAE技術,會基本模具CAM加工。
2.本畢業(yè)設計(論文)課題任務的內容和要求(包括原始數據、技術要求、工作要求等):
要求在了解塑料模具設計與制造工藝的基礎上,抓緊時間學習注塑成型原理,并了解注塑模具精度的保證問題。并且了解冰露礦泉水瓶瓶蓋螺紋伺服脫模模具設計使用要求,對塑料模具工作尺寸的計算一定要仔細全面,對注塑機的選擇合適并且對鎖模力等進行校核。原始數據:測繪冰露礦泉水瓶蓋,并繪制原始圖樣。
工作量要求:
課題實施辦法:
1、 在理解任務書后,按要求完成開題報告一份;
2、 根據本專業(yè)或者和本專業(yè)相近的專業(yè),查閱外文資料完成外文資料譯文(約3000漢字)一篇;
3、 完成畢業(yè)設計論文(4000字左右)一篇,其中中文摘要300漢字左右,外文摘要約250個詞左右;
4、 將畢業(yè)設計期間所有的設計思想和遇到的困難及解決辦法都要在設計任務書中體現出來;
畢 業(yè) 設 計(論 文)任 務 書
3.對本畢業(yè)設計(論文)課題成果的要求〔包括圖表、實物等硬件要求〕:
工作量要求:
1、完成冰露礦泉水瓶瓶蓋螺紋伺服脫模模具設計設計說明書一份;
2、完成冰露礦泉水瓶瓶蓋螺紋伺服脫模模具設計裝配圖和零件圖若干;
3、完成裝配圖與部分零件圖總圖量:累加起來達到A0圖紙2張;
4.主要參考文獻:
[1]齊衛(wèi)東主編。塑料模具設計與制造.北京:高等教育出版社,2004
[2]張利平主編.液壓傳動設計指南[M].第1版.北京:化學工業(yè)出版社,2012.4 [3][3]鄧明主編.實用模具設計簡明手冊[M].第1版.北京:機械工業(yè)出版社,2010.1
[4]CSCD核心期刊.機械設計[J].天津.中國科學技術協會.12-1120/TH
[5]Watson I. Case-based reasoning is a methodology not a technology[J].K now ledge-Based Systems , 1999.12(5-6) : 303-308
[6] W.J.Dan, W.G. Zhang, S.H. Li and Z.Q. Lin. An experimental investigation oflarge-strain tensile behavior of a metal sheet[J].Materials &Design,2007,28:2190~2196
[7] Wilson,F.W.Die design handbook MaGraw Hill 1990.6
畢 業(yè) 設 計(論 文)任 務 書
5.本畢業(yè)設計(論文)課題工作進度計劃:
起 訖 日 期
工 作 內 容
起 訖 日 期
工 作 內 容
2019年12月18日-2019年12月20日
指導教師下發(fā)任務書,師生見面討論、并當面給學生分配設計任務
2019年12月23日-2020年3月2日
學生搜集資料,提交開題報告及外文翻譯的初稿
2020年3月9日-2020年3月17日
提交開題報告、外文參考資料及譯文的修改稿
2020年3月18日-2020年3月30日
進一步完善前期的各項材料,提交各項材料的定稿,開始準備畢業(yè)設計的課題研究
2020年4月1日-2020年4月8日
進行畢業(yè)設計中期檢查,學生進行課題的設計、編程、安裝、調試
2020年4月9日-2020年5月18日
學生進一步完善課題的設計、編程、安裝、調試,教師評閱學生畢業(yè)設計;學生準備畢業(yè)設計答辯
所在專業(yè)審查意見:
同意
專業(yè)(系)負責人:
2019年12月26日
學院審查意見:
同意
學院負責人:
2020年1月8日
畢業(yè)設計(論文)外文資料翻譯
設計(論文)題目: 冰露礦泉水瓶瓶蓋螺紋伺服脫模模具設計
學生姓名:
學 院: 機械與電氣工程學院
專 業(yè):
班 級:
學 號:
指導教師:
外文出處:
年2月27日
1.外文資料翻譯譯文(約3000漢字):
注塑件模擬焊縫成形的實驗驗證
J.G. Kovács*, B. Sikló
布達佩斯技術經濟大學高分子工程系
摘要:近幾年來,由于對注塑件性能要求的不斷提高,人們對注塑件的焊縫分析越來越感興趣。當兩個熔化前沿相互接觸時形成焊縫。如果不修改零件的幾何結構,就不可能完全消除焊縫,但可以將其對零件性能和外觀的負面影響降到最低。這可以通過試錯實驗或模型預測來實現。后者的成本和時間效率使其成為焊縫分析的首選方法。注射成形計算機模擬軟件包能夠準確預測焊縫位置,但現有的軟件包都不能定量預測焊縫接觸角和力學性能。本文對焊縫成形過程進行了分析,提出了改進有限元網格的方法,以獲得較好的效果。
關鍵詞:焊縫;注塑成型;模擬;有限元網格
1、介紹
注塑成型是用于成型塑料零件的最有效的工藝之一[1–6]。該方法的有效性取決于產品的質量,這可能會受到工藝設置不足或模具結構造成各種缺陷的阻礙。許多缺陷如焊縫、翹曲、噴射或凹陷等都會降低注塑件的質量,降低生產效率。在注塑件的設計中,焊縫的產生是一個重要的美學和機械問題。當兩個熔化前沿相互接觸時形成焊縫。在具有多個澆口的零件中,在模具填充過程中,可變壁厚、孔或型芯形成單獨的熔體前沿,而分離的熔體前沿形成焊縫,從而在零件中造成許多故障[7,8]。它不僅惡化了局部的機械性能,而且會產生光學缺陷,特別是在使用高光澤材料時。Chen等人在ABS拉伸鋼筋上研究了感應加熱在表面溫度控制中的應用,消除了焊縫表面的痕跡 [9]。 的確許多參數對焊縫的性能有影響,這些因素已經從多個方面進行了研究。在力學性能方面,對焊縫強度和模量進行了分析,結果表明焊縫對拉伸模量沒有顯著影響[10,11]。一些研究人員[12-15]使用焊縫系數(WL factor),定義為:有焊縫的試樣強度/沒有焊縫的試樣強度,來評估他們的實驗。采用高熔體溫度、高保壓壓力和低結晶器溫度對未填充材料的影響系數最高。利用激光引伸計和聲發(fā)射對焊縫進行了研究,得出的結論是焊縫不是材料中的簡單不連續(xù),而是應力應變分布的局部擴展擾動[16]。
近年來,由于對注塑件性能要求的不斷提高,人們對注塑件焊縫分析的興趣大大增加。如果不修改零件的幾何結構,就不可能完全消除焊縫,但可以將其對零件性能和外觀的負面影響降到最低。這可以通過試錯實驗或模型預測來實現。后者的成本和時間效率使其成為焊縫分析的首選方法。注射成型計算機模擬軟件包能夠準確預測焊縫位置,但現有的軟件包都不能定量預測焊縫性能。這主要是因為迄今為止,焊縫特性的數學模型不可用[17]。
在他們的文章中,周和李[17]提出了一個基于人工神經網絡方法(ANN)的焊縫強度評估模型。對于網絡的輸入,選擇了影響焊縫性能的因素,即材料的取向系數、相遇角和熔體流動歷史系數。與試驗結果的比較表明,該模型能夠定量地預測焊縫性能,為工程設計提供了依據。Zhou等人 [18] 研究了熔體溫度和保壓對焊縫試件力學性能的影響,發(fā)現隨著保壓和熔體溫度的升高,焊縫試件的屈服強度和疲勞強度增加。他們解釋了觀察到的不同性質的皮膚核心形態(tài),這是受熔體溫度和保持壓力的影響。
Au [19]使用幾何方法來生成塑料部件的填充圖案,并確定可能的焊接線的大致位置。Fathi和Behravesh[20]用可視化技術研究了焊縫成形過程中的流動動力學行為,而Zhou和Li[17]開發(fā)了一個人工網絡來預測焊縫性能。為了確定網絡的輸入參數,對影響因素進行了詳細的分析。對不可避免的焊縫非關鍵區(qū)域的形成和定位進行了仿真分析。多澆口零件焊縫定位的流量控制采用流道尺寸調整方法[21]。Mezghani[22]將模擬的焊縫位置結果與注塑件的實際位置進行了比較。Zhou和Li[23]提出了一種基于初始相遇節(jié)點特征的焊縫檢測算法。Chen[24]在零件仿真模型中應用模糊理論,通過改變壁厚和澆口位置來控制焊縫位置。Chun[25]通過模擬研究了壁厚和澆口位置對焊縫形成和位置的影響。
2、實驗
實驗在Arburg Allrounder 320C 600-250注塑機上使用雙腔注射模進行。這種特殊的模具有可更換的插入件,可以用不同的澆口類型(標準、薄膜、特殊薄膜等)具有不同的模具表面光潔度(拋光、細腐蝕、粗腐蝕),并注入不同厚度的試樣(0.5–4 mm)。樣品的厚度是由一個移動的部分來設置的,以定位空腔的深度。注射模的頂出系統(tǒng)不同于傳統(tǒng)的頂出系統(tǒng),它不包括頂出銷,而是在整個零件表面積上工作,從而消除了試樣的變形。澆口類型可以隨插入型腔之間的嵌件的變化而變化,而無需從注塑機上拆下模具。實驗中,采用了精細的腐蝕表面光潔度,并在模具中設置了雙標準澆口鑲塊。
每個零件的標稱尺寸為80 mm×80mm×2mm,從兩點注射成型。兩個標準澆口位于腔的一側,距零件邊緣10 mm,相距60 mm。
采用聚酰胺6(Durethan B30S,Lanxess)進行研究。在注射成型之前,材料在80℃注射工藝條件保持恒定,模具溫度為90℃, 當熔體溫度設定在280℃ 使用不同的切換點設置使用短射技術制作試樣。在樣品上測量熔體前沿的相遇角,作為流動距離的函數。
測量結果繪制在圖5上。從中可以清楚地看出,會合角隨流長的增加而增大。在7毫米的流動距離,它達到了一個可測量的焊縫角約28°,當距離為22毫米時,角度為100°。在較長的流動中,由于熔體前沿的輪廓,無法測量會合角。
通過在澆口位置中心使用同心圓對熔體前沿進行可視化,還構建了會合角。結果表明,拉伸會合角的增加沒有測量值高。在理論流動距離為10毫米時,它很好地代表了測量值,但在較長的距離時,它低估了實驗尺度。
3、分析
有限元模擬注射成型是目前設計注射模最先進的技術。市場上有不同級別的節(jié)目。這些基礎知識對產品設計有一定的幫助,可以在不了解塑料制造的情況下使用。更復雜的程序能夠模擬整個注射成型過程,這樣人們就可以看到模具是否能夠完美工作。這種軟件覆蓋了大量的材料和機械數據庫,設計者必須具備塑料制造的專業(yè)知識。
對于注塑模擬,在大多數情況下,采用二維三角形單元或三維四面體單元來描述型腔,其中兩節(jié)點管單元用于流道、連接件和通道。用控制體積法計算了熔體前沿的變化。在每一步中都可以得到壓力場、溫度場和速度場。這些結果構成了應力和變形分析以及焊縫結果的基礎。
Moldflow Plastics Insight 6.2用于模擬分析實驗中使用的零件模型。在分析過程中,使用了三種不同的中間平面網格類型:原始網格、理想網格和平滑網格。每種網格類型在4個網格邊長度中完成:1、2、2.5和5 mm。
原始網格是指模型由等邊三角形組成,沿估計焊縫的節(jié)點不產生直線。這種網格類型的優(yōu)點是具有良好的長寬比。網格單元的長寬比非常重要,因為它影響結果的精度。比率定義了三角形的最長邊與三角形面積之間的相關性,而中面網格的推薦最大縱橫比為約6。可以看出,在每一條邊的長度上,這種網格三角形的平均長寬比都大于1.5。
理想網格由具有共線節(jié)點的等腰三角形構成。生成這種網格類型的優(yōu)點是,它可以很好地自動化,但是,由于較差的縱橫比,即2,它不如原始網格那樣精確。在平滑網格的情況下,原始網格的節(jié)點收斂形成一條線,在預測的焊縫區(qū)域中創(chuàng)建網格三角形邊的更均勻路徑。它是從原始網格類型生成的,并在焊縫區(qū)域進行了修改。將焊縫上的節(jié)點靠近理想焊縫位置。
模擬分析的工藝設置與實驗注射成型相同,模具恒溫,熔體溫度為90℃和280℃。
焊縫分析結果與實驗結果進行了比較。在大多數情況下,理想的網格類型最適合測量結果。在邊長為1mm的情況下,采用理想和平滑網格類型的分析接近于流量長度為7-10mm之間的測量結果。原始網格類型計算的值沿整個檢測流長在測量結果周圍波動,不接近測量值,而其他網格類型與流動開始時的測量值不同。同時觀察到,在距離為10 mm后,所有網格都預測出焊縫角急劇增加。
當網格長度為2 mm且流動距離較短時,振動再次明顯。與測量結果相比,原始網格給出的結果最不準確。角度值變化較大:計算出焊縫角為0°距離10.6毫米但147°12毫米。除原始網格外,在較長的流動路徑下與測量結果的差異小于在邊緣長度為2 mm時的差異。
邊緣長度增加到2.5mm,測量結果和模擬結果之間的相似性降低。在流動距離為15~20 mm的區(qū)域,用理想網格模擬計算的焊縫線角與實測值接近,但其它網格變化不符合實測值的變化趨勢。
使用5 mm的邊緣長度,曲線之間的一致性很弱。盡管分析結果顯示出一些相似性,但出乎意料的是,結果僅在少數流動長度下接近測量值。
比較每個邊緣長度處的不同網格類型,可以注意到在每種情況下,理想網格與測量數據的相關性最好,在0.95和0.98之間變化。結果還表明,理想網格的最佳相關度在高邊長處,即5mm處,但隨著邊長的減小,相關度降低的幅度相對較小。對于原始網格類型,相關性最低,但隨著邊緣長度的增加,相關性顯著提高,但這種網格類型并沒有達到理想的相關性值。使用平滑網格,相關度隨著邊緣長度的增加而提高,但也沒有達到理想網格類型的值。
參考文獻
[1] T. Tábi, J.G. Kovács, Examination of injection molded thermoplastic maize starch. Express Polym. Lett. 12 (2007) 423.
[2] L. Mészáros, T. Tábi, J.G. Kovács, T. Bárány, The effect of EVA content on the processing parameters and the mechanical properties of LDPE/ground tire rubber blends. Polym. Eng. Sci. 48 (2008) 868.
[3] E. Lafranche, P. Krawczak, J.P. Ciolczyk, J. Maugey, Injection moulding of long glass fibre reinforced polyamide 6-6: guidelines to improve flexural properties. Express Polym. Lett. 7 (2007) 456.
[4] G. Dogossy, T. Czigány, Modeling and investigation of the reinforceing effect of maize hull in PE matrix composites. Polym. AdvanTechnol. 17 (2006) 825.
[5] S. Hashemi, Effect of temperature on tensile properties of injection moulded short glass fibre and glass bead filled ABS hybrids. Express Polym. Lett. 7 (2008) 474.
[6] K. Banik, Effect of mold temperature on short and long-term mechanical properties of PBT. Express Polym. Lett. 2 (2008) 111.
[7] J. Shoemaker, Moldflow Design Guide. Carl Hanser Verlag, Munich,2006.
[8] R.A. Malloy, Plastic Part Design for Injection Molding. Hanser Publishers, 1994.
[9] S.-C. Chen, W.-R. Jong, J.-A. Chang, Dynamic mold surface temperature control using induction heating and its effects on the surface appearance of weld line. J. Appl. Polym. Sci. 101 (2006) 1174.
[10] S. Hashemi, Y. Lepessova, Temperature and weldline effects on tensile properties of injection moulded short glass fibre PC/ABS polymer composite. J. Mater. Sci. 42 (2007) 2652.
[11] S. Hashemi, Thermal effects on weld and unweld tensile properties of injection moulded short glass fibre reinforced ABS composites. Express Polym. Lett. 1 (2007) 688.
[12] R. Seldén, Effect of processing on weld line strength in five thermoplastics. Polym. Eng. Sci. 37 (1997) 205.
[13] S. Hashemi, Influence of temperature on weldline strength of injection moulded short glass fibre styrene maleic anhydride polymer composites. Plast. Rubber Compos 31 (2002) 318.
[14] C. Lu, S. Guo, L. Wen, J. Wang, Weld line morphology and strength of polystyrene/polyamide-6/poly(styrene-co-maleic anhydride) blends.Eur. Polym. J. 40 (2004) 2565.
[15] N. Merah, M. Irfan-ul-Haq, Z. Khan, Temperature and weld-line effects on mechanical properties of CPVC. J. Mater. Process. Tech. 142 (2003) 247.
[16] C. Bier?gel, W. Grellmann, T. Fahnert, R. Lach, Material parameters for the evaluation of PA welds using laser extensometry. Polym.Test. 25 (2006) 1024.
[17] H. Zhou, D. Li, Computer evaluation of weld lines in injectionmolded parts. J. Reinf. Plast. Comp. 24 (2005) 315.
[18] Y. Zhou, P.K. Mallick, Effects of melt temperature and hold pressure on the tensile and fatigue properties of an injection molded talcfilled polypropylene. Polym. Eng. Sci. 45 (2005) 755.
[19] C.L. Au, A geometric approach for injection mould filling simulationInt. J. Mach. Tools Manuf 45 (2005) 115.
[20] S. Fathi, A.H. Behravesh, Visualization analysis of flow behavior during weld-line formation in injection molding process. Polym. Plast. Technol. 47 (2008) 666.
[21] M. Zhai, Y. Lam, C. Au, Runner sizing and weld line positioning for plastics injection moulding with multiple gates. Eng. Comput. 21(2006) 218.
[22] K. Mezghani In: The 6th Saudi Engineering Conference, Dharan,2002, pp. 335–347.
[23] H. Zhou, D. Li, Modelling and prediction of weld line location and properties based on injection moulding simulation. Int. J. Mater. Prod. Technol. 21 (2004) 526.
[24] M.-Y. Chen, H.-W. Tzeng, Y.-C. Cheng, S.-C. Chen, The application of fuzzy theory for the control of weld line positions in injection molded part. ISA T 47 (2008) 119.
[25] D.H. Chun, Cavity filling analyses of injection molding simulation:bubble and weld line formation. J. Mater. Process. Tech. 89-90 (1999) 177.
2.外文資料原文(與課題相關,至少1萬印刷符號以上):
Experimental validation of simulated weld line formation in injection moulded parts
J.G. Kovács*, B. Sikló
Abstract:The interest in weld line analysis of injection-moulded parts has increased in the past few years, mainly because of the ever-increasing requirements for the performance of injec- tion-moulded items. Weld lines are formed when two melt fronts come in contact with each other. Whereas the total elimination of weld lines is not always possible without modifying the part geometry, their negative in?uence on part performance and appear- ance can be minimized. This can be done by trial and error experiments or by model prediction. The cost and time ef?ciency of the latter makes it a preferred route for weld lines analysis. Computer simulation packages of injection moulding are capable of accu- rately predicting the weld line location, but none of the current ones can predict the weld line contact angle or mechanical properties quantitatively. This paper focuses on the analysis of weld line formation and suggests ways to modify the ?nite element mesh to get better results.
Keywords:Weld line ;Knit line;Injection moulding ;Simulation;Finite element mesh
1.Introduction
Injection moulding is one of the most productive processes used to form plastic parts [1–6]. The effectiveness of the method depends on the quality of the product, which can be hindered by inadequate process settings or mould construction causing various de?ciencies. Many kind of defect such as weld lines, warpage, jetting or sink marks can reduce the quality of the injection moulded parts, worsening productivity. The occurrence of a weld line means a signi?cant problem both aesthetically and mechanically in the design of injection moulded parts.
Weld lines are formed when two melt fronts come in contact with each other. In a part with multiple gates, variable wall thicknesses, holes or cores form separate melt fronts during mould ?lling and the separated melt fronts create weld lines, causing numerous troubles in the part [7,8]. It not only worsens the local mechanical properties, but creates optical imperfections, especially when using high gloss materials. The surface marks of weld lines can be eliminated by the application of induction heating in surface temperature control, which was investigated on ABS tensile bars by Chen et al. [9].
Many parameters have an effect on the properties of a weld line and these factors have been investigated from many aspects. As regards mechanical properties, analysis of weld line strength and modulus was performed and showed that the weld line did not have a signi?cant effect on tensile modulus [10,11]. Several researchers [12–15] used the weld line factor (WL-factor), de?ned as: strength of specimens with weld line/strength of specimens without weld line, to evaluate their experiments. Highest WL- factors were obtained for un?lled materials and using high melt temperature, high holding pressure and low mould temperature. Weld lines were studied using laser exten- someter and acoustic emission, and the conclusion was that a weld line is not a simple discontinuity in the material, but a locally extended disturbance of the stress and strain distribution [16].
The interest in weld line analysis of injection-moulded parts has increased greatly in the past few years, mainly because of the ever-increasing requirements for the performance of injection-moulded items. Whereas the total elimination of weld lines is not always possible without modifying the part geometry, their negative in?uence on part performance and appearance can be minimized. This can be done by trial and error experiment or by model prediction. The cost and time ef?ciency of the latter makes it a preferred route for weld line analysis. Computer simulation packages of injection moulding are capable of accurately predicting the weld line location, but none of the current ones can predict the weld line prop- erties quantitatively. This is mainly because a mathematical model for weld line properties is, to date, unavailable [17].
In their article, Zhou and Li [17] presented an evaluation model for weld line strength based on the arti?cial neural network method (ANN). For the input of the network, the factors affecting weld line properties were chosen; those are the orientation coef?cient of the material, the meeting angle and the melt mobility history coef?cient. Comparison with experimental results shows that the presented model is capable of predicting weld line properties quantitatively for engineering design. Zhou et al. [18] examined the effects of melt temperature and hold pressure on the mechanical properties of specimens with weld lines and found that the yield and fatigue strengths of the specimens increased with increasing hold pressure as well as increasing melt temperature. They explained the observed differences in properties in terms of a skin-core morphology, which was in?uenced by both the melt temperature and the holding pressure.
Au [19] used a geometrical approach to generate the ?lling patterns of plastic parts and determine the approx- imate location of possible weld lines. Fathi and Behravesh[20] studied the kinematical behaviour of the ?ow during weld formation with a visualization technique, while Zhou and Li [17] developed an arti?cial network to predict weld line properties. The affecting factors were analyzed in detail in order to identify the input parameters for the network. The formation and positioning in noncritical areas of unavoidable weld lines are also investigated with simula- tion analyses. The controlling of the ?ow for weld line positioning for multi-gated parts was carried out with a runner resizing method [21]. Mezghani [22] compared the simulated weld line location results with the real position on injection moulded parts. Zhou and Li [23] presented a weld detector algorithm, which is based on the characteristics of the initial meeting node. Chen [24] applied fuzzy theory for controlling the weld line position by varying the wall thickness and the gate location in part simulation models. Chun [25] showed by simulation the effect of wall thickness and gate location on the formation and position of weld lines.
2.Experimental
The experiments were performed on an Arburg Allrounder 320C 600-250 injection moulding machine using a two cavity-injection mould (Fig. 1.). This special mould has changeable inserts to be able to inject with different gate types (standard, ?lm, special-?lm, multi gates, etc.), with different mould surface ?nishes (polished, ?ne eroded, rough eroded) and to inject different thickness specimens (0.5–4 mm). The thickness of the samples is set by a moving part to position the depth of the cavities. The ejection system of the injection mould differs from the conventional one; it does not include ejector pins but operates on the whole part surface area, so eliminating deformation of the sample. The gate type can be varied with the change of an insert interposed between the cavi- ties without dismounting the mould from the injection moulding machine. For the experiments, a ?ne eroded surface ?nish was used and an insert with double standard gates was set in the mould.
Each part, having nominal dimensions of 80 mm 80 mm 2 mm, was injection moulded from two points (Fig. 2.). The two standard gates are located on one side of the cavity 10 mm from the part edge and 60 mm apart.
Polyamide 6 (Durethan B30S, Lanxess) was used for the investigations. Before injection moulding, the material was dried at 80 ○C for 4 h. The injection processing conditions were kept constant; the mould temperature was 90 ℃while the melt temperature was set at 280 ○C. The speci- mens were produced with short shot technology using different switch-over point settings (Fig. 3.). The meeting angle of the melt front was measured on the samples as a function of the ?ow distance (Fig. 4.).
The results of the measurement are plotted on Fig. 5. It can be clearly seen that the meeting angle increased with the ?ow length. At a ?ow distance of 7 mm, it reached a measurable weld line angle of about 28○, while at a distance of 22 mm the angle achieved was 100○. At longer ?ows the measurement of the meeting angle was not possible because of the pro?le of the melt front.
The meeting angles were also constructed from the visualization of the melt fronts using concentric circles centred at the gate locations. The results showed that the increase of the drawn meeting angle was not as high as the measured values (Fig. 5.). At a theoretical ?ow distance of 10 mm it represented the measured values well but at a longer distance it underestimated the experimental scale.
3、Analysis
Injection moulding simulation with the ?nite element method is the most advanced technique for designing injection moulds. There are different levels of program available on the market. The basic ones are helpful in product design, which can be used without having deep knowledge of plastic manufacturing. The more complex programs are able to simulate the whole injection moulding process so one can see whether the mould will be able to work perfectly or not. Such software cover enor- mous databases of materials and machines and the designers must have professional knowledge of plastic manufacturing.
For an injection moulding simulation, in most cases two-dimensional triangular elements or three-dimensional tetrahedron elements are used to describe the cavity, with two-node tube elements for the runners, connectors and channels. The melt front advancements are calculated by the control volume method. The pressure, temperature and velocity ?eld can be obtained in each time step. These results constitute the basis of the stress and deformation analysis as well as results for weld lines.
Mold?ow Plastics Insight 6.2 was used for the simulation analyses with a model of the part used in the experiments (Fig. 6.). During the analyses, three different mid plane mesh types were used and compared: original mesh, ideal mesh and smoothed mesh. Each mesh type was completed in 4 mesh edge lengths: 1, 2, 2.5 and 5 mm.
Original mesh means that the model consists of equilateral triangles and the nodes along the estimated weld line did not produce a straight line. The advantage of this mesh type is the good aspect ratio. The aspect ratio of the mesh elements is important because it affects the accuracy of the results. The ratio de?nes the correlation between the longest side of the triangle and the triangle area, and the recommended maximum aspect ratio for a mid plane mesh is about 6. It can be seen that at every edge length this type of mesh triangle was greater than an average aspect ratio of 1.5.
Ideal mesh is made up of isosceles triangles with collinear nodes. The advantage of the generation of this mesh type is that it can be well automated, however, because of the worse aspect ratio, namely 2, it was not as accurate as the original mesh (Fig. 7). In the case of the
smoothed mesh, the nodes of the original mesh are converged to form a line creating a more uniform path of the mesh triangle sides in the area of the predicted weld line. It was generated from the original mesh type with modi?cation at the weld line region. The nodes positioned on the weld line were made nearer to the ideal weld line position.
The process settings for the simulation analyses were identical to the experimental injection moulding, constant mould temperature and melt temperature namely 90 ℃ and 280 ℃。
The weld line analysis results were compared to the experimental. In most cases, the ideal mesh type best ?tted the results of the measurements. At an edge length of 1 mm, the analyses with ideal and smoothed mesh type came close to the measurement results between flow lengths of 7 and 10 mm (Fig. 8.). The values calculated with original mesh type flucated