《線性變換和矩陣》PPT課件.ppt

上傳人:za****8 文檔編號:15408640 上傳時(shí)間:2020-08-10 格式:PPT 頁數(shù):30 大小:574.02KB
收藏 版權(quán)申訴 舉報(bào) 下載
《線性變換和矩陣》PPT課件.ppt_第1頁
第1頁 / 共30頁
《線性變換和矩陣》PPT課件.ppt_第2頁
第2頁 / 共30頁
《線性變換和矩陣》PPT課件.ppt_第3頁
第3頁 / 共30頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《《線性變換和矩陣》PPT課件.ppt》由會員分享,可在線閱讀,更多相關(guān)《《線性變換和矩陣》PPT課件.ppt(30頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、7.3 線性變換和矩陣,一、內(nèi)容分布 7.3.1 線性變換的矩陣 7.3.2 坐標(biāo)變換 7.3.3 矩陣唯一確定線性變換 7.3.4 線性變換在不同基下的矩陣----相似矩陣 二、教學(xué)目的: 1熟練地求出線性變換關(guān)于給定基的矩陣,以及給定n 階矩陣和基,求出關(guān)于這個(gè)基的矩陣為的線性變換 2由向量關(guān)于給定基的坐標(biāo),求出()關(guān)于這個(gè)基的坐標(biāo) 3已知線性變換關(guān)于某個(gè)基的矩陣,熟練地求出關(guān)于另一個(gè)基的矩陣. 三、重點(diǎn)難點(diǎn): 線性變換和矩陣之間的相互轉(zhuǎn)換, 坐標(biāo)變換, 相似矩陣.,7.3.1 線性變換的矩陣,現(xiàn)在設(shè)V是數(shù)域F上一個(gè)n維向量空間,令是V的一個(gè)線性變換,取定V的一個(gè)基 令,,設(shè),n

2、 階矩陣A 叫做線性變換關(guān)于基 的矩陣. 顯然,A的第j 列就是(j)關(guān)于基 的坐標(biāo). 上面的表達(dá)常常寫出更方便的形式:,,(1),由此可知: 取定F上n維向量空間V的一個(gè)基之后,對于V的每一個(gè)線性變換,都有唯一確定的n階矩陣A與之對應(yīng)這樣一來,從L(V)到Mn(F)必然存在著一個(gè)對應(yīng)關(guān)系----映射,不妨記為,練習(xí):教材P284---習(xí)題第1題,7.3.2 坐標(biāo)變換,設(shè)V 是數(shù)域F上一個(gè)n 維向量空間, 是V 的一個(gè)基, 關(guān)于這個(gè)基的坐標(biāo)是 而()的坐標(biāo)是 問: 和 之間有什么關(guān)系呢?,,設(shè),因?yàn)槭蔷€性變換,所以,(2)

3、,將(1)代入(2)得,最后,等式表明, 的坐標(biāo)所組成的列是,綜合上面所述, 我們得到坐標(biāo)變換公式:,定理7.3.1 令V是數(shù)域F上一個(gè)n 維向量空間,是V的一個(gè)線性變換,而關(guān)于V的一個(gè)基 的矩陣是,如果V中向量關(guān)于這個(gè)基的坐標(biāo)是 ,而()的坐標(biāo)是 ,,那么,,例,例在空間 內(nèi)取從原點(diǎn)引出的兩個(gè)彼此正交的單位向量 作為 的基.令是將 的每一向量旋轉(zhuǎn)角的一個(gè)旋轉(zhuǎn). 是 的一個(gè)線性變換.我們有,所以關(guān)于基 的矩陣是,設(shè) ,它關(guān)于基 的坐標(biāo)是 ,而 的坐標(biāo)是 .那么,例3 令是數(shù)域上一個(gè)n維向量空間, 是的一個(gè)位似

4、,那么關(guān)于任意基的矩陣是 特別地,的單位變換關(guān)于任意基的矩陣是單位矩 陣;零變換關(guān)于任意基的矩陣是零矩陣,7.3.3 矩陣唯一確定線性變換,引理7.3.2 設(shè)V是數(shù)域F上一個(gè)n 維向量空間, 是V的一個(gè)基,那么對于V 中任意n個(gè)向量 ,有且僅有 V 的一個(gè)線性變換,使得:,,我們證明,是V的一個(gè)線性變換。設(shè),那么,于是,設(shè) 那么,,,這就證明了是V的一個(gè)線性變換。線性變換顯然滿足定理所要求的條件:,,如果是V的一個(gè)線性變換,且,,那么對于任意,從而 ,,定理7.3.3 設(shè)V 是數(shù)域 F 上一個(gè)n 維向量空間, 是V 的一個(gè)基,對于V 的每一個(gè)線性變換,

5、令關(guān)于基 的矩陣A與它對應(yīng),這樣就得到V 的全體線性變換所成的集合 L(V)到F上全體n 階矩陣所成的集合 的一個(gè)雙射,并且如果 ,而 , 則 (3) (4),證 設(shè)線性變換關(guān)于基 的矩陣是A。那么 是 的一個(gè)映射。,是F上任意一個(gè)n階矩陣。令,由引理7.3.2,存在唯一的 使,反過來,設(shè),顯然關(guān)于基 的矩陣就是A. 這就證明了如上建立的映射是 的雙射.,設(shè) 我們有,由于是線性變換, 所以,因此,所以關(guān)于基 的矩陣就是AB。(7)式成立,至于(6)式成立,是顯然的。,推論7.3.4 設(shè)數(shù)域F上n 維

6、向量空間V 的一個(gè)線性變換關(guān)于V 的一個(gè)取定的基的矩陣是A,那么可逆必要且只要A可逆,并且 關(guān)于這個(gè)基的矩陣就是 .,我們需要對上面的定理7.3.1和定理7.3.3的深刻意義加以說明:,1. 取定n 維向量空間V的一個(gè)基之后, 在映射: 之下, (作為向量空間),研究一個(gè)抽象的線性變換, 就可以轉(zhuǎn)化為研究一個(gè)具體的矩陣. 也就是說, 線性變換就是矩陣.以后,可以通過矩陣來研究線性變換,也可以通過線性變換來研究矩陣.,2. 我們知道, 數(shù)域F上一個(gè)n 維向量空間V 同構(gòu)于 , V上的線性變換,轉(zhuǎn)化為 上一個(gè)具體的變換:,也就是說, 線性變換都具有上述形式

7、.,,,引言: 一般地線性變換關(guān)于基的矩陣與基的選擇有關(guān),同一線性變換在V中的兩個(gè)不同基下的矩陣一般不同. 為了利用矩陣研究線性變換,顯然需要討論線性變換在不同基下的矩陣間的關(guān)系。,,,,,,,,,,,,,,,,,,,引例:設(shè) ,且 關(guān)于基 , 的矩陣為 求關(guān)于基 的矩陣 分析:本題不能直接用定義做,因 的對應(yīng)關(guān)系不清楚, 由定義是求B使 B, 又由題知 ,而 與 間的關(guān)系易得,因而可通過上述已知轉(zhuǎn)化一下。,,,,,,,,,解:設(shè) B, 因 ,所以 其中 . 于是,,,,,,,,,,,,,所以,設(shè)線性變換關(guān)于基

8、 的矩陣是 A , 關(guān)于基 的矩陣是 B , 由基 到基 的過渡矩陣T, 于是有:,定理7.3.5,,7.3.4 線性變換在不同基下的矩陣 相似矩陣,(1),(2),(3),由(3)得,比較兩端,得,證明:,定義:設(shè) A,B 是數(shù)域 F 上兩個(gè) n 階矩陣. 如果存在F上一個(gè) n 階可逆矩陣 T 使等式成立,那么就說B與A相似,記作: .,n階矩陣的相似關(guān)系具有下列性質(zhì):,1. 自反性:每一個(gè)n階矩陣A都與它自己相似,因?yàn)?2. 對稱性:如果 ,那么 ;因?yàn)橛?事實(shí)上,由 得,因此: 線性變換在

9、不同基下的矩陣是相似的. 反過來,一對相似矩陣可以是同一個(gè)線 性變換在不同基下的矩陣.(證明略----教材 P283P284),容易證明,NOTE: 這兩個(gè)式子的作用在于方便運(yùn)算,例4 設(shè)A、B都是n階矩陣,且A可逆. 證明: ABBA.,問題:Th7.3.5說明, 關(guān)于V的不同基的矩陣是相似的;且所有彼此相似的矩陣可看成同一線性變換在不同基下的矩陣。這自然會提出問題: 滿足什么條件下,可以并且如何選取V的基,使線性變換關(guān)于這個(gè)基的矩陣盡可能簡單?或曰:方陣滿足什么條件時(shí),如何在彼此相似的矩陣中選取一個(gè)方陣,使得它最簡單?這是因?yàn)楹唵畏疥囇芯科饋矸奖阋恍:髱坠?jié)討論,什么樣的方陣與對角方陣相似,進(jìn)而尋找可逆方T,對給定的方陣A,使得 為對角形。,,,,,,,,,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!