《湖南省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題六 解析幾何第1講 直線與圓》由會員分享,可在線閱讀,更多相關(guān)《湖南省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題六 解析幾何第1講 直線與圓(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、專題六 解析幾何第1講 直線與圓
真題試做
1.(2012·陜西高考,理4)已知圓C:x2+y2-4x=0,l是過點(diǎn)P(3,0)的直線,則( ).
A.l與C相交 B.l與C相切
C.l與C相離 D.以上三個選項均有可能
2.(2012天津高考,理8)設(shè)m,nR,若直線(m+1)x+(n+1)y-2=0與圓(x-1)2+(y-1)2=1相切,則m+n的取值范圍是( ).
A.[1-,1+] B.(-,1-] [1+,+)
C.[2-2,2+2] D.(-,2-2] [2+2,+)
3.(2012·重慶高考,理3)對任意的實數(shù)k,直線y=k
2、x+1與圓x2+y2=2的位置關(guān)系一定是( ).
A.相離 B.相切
C.相交但直線不過圓心 D.相交且直線過圓心
4.(2012·江蘇高考,12)在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),則k的最大值是__________.
5.(2012·江西高考,文14)過直線x+y-2=0上點(diǎn)P作圓x2+y2=1的兩條切線,若兩條切線的夾角是60°,則點(diǎn)P的坐標(biāo)是__________.
6.(2012·浙江高考,文17)定義:曲線C上的點(diǎn)到直線l的距離的最小值稱
3、為曲線C到直線l的距離.已知曲線C1:y=x2+a到直線l:y=x的距離等于曲線C2:x2+(y+4)2=2到直線l:y=x的距離,則實數(shù)a=__________.
考向分析
直線與方程是解析幾何的基礎(chǔ),高考中主要考查基本概念和求在不同條件下的直線方程;直線平行與垂直的關(guān)系的判定;兩條直線的交點(diǎn)和距離問題等,一般以選擇題、填空題的形式考查.對于圓的考查,主要是結(jié)合直線的方程用幾何法或待定系數(shù)法確定圓的標(biāo)準(zhǔn)方程及一般方程;利用圓的性質(zhì)求動點(diǎn)的軌跡方程;直線與圓,圓與圓的位置關(guān)系等問題,其中含參數(shù)問題為命題熱點(diǎn).一般以選擇題、填空題的形式考查,難度不大,從能力要求看,主要考查函數(shù)與方程的思想,
4、數(shù)形結(jié)合思想以及分析問題與解決問題的能力.
熱點(diǎn)例析
熱點(diǎn)一 直線方程與兩條直線的位置關(guān)系
經(jīng)過點(diǎn)P(2,-3)作圓(x+1)2+y2=25的弦AB,使點(diǎn)P為弦AB的中點(diǎn),則弦AB所在直線方程為( ).
A.x-y-5=0 B.x-y+5=0
C.x+y+5=0 D.x+y-5=0
規(guī)律方法 (1) 求直線方程的方法
①直接法:直接選用恰當(dāng)?shù)闹本€方程的形式,寫出結(jié)果;
②待定系數(shù)法:先由直線滿足的一個條件設(shè)出直線方程,使方程中含有一待定系數(shù),再由題目中另一條件求出待定系數(shù).
(2)兩條直線平行與垂直的判定
①若兩條不重合的直線l1,l2
5、的斜率k1,k2存在,則l1∥l2k1=k2,l1⊥l2k1k2=-1;
②兩條不重合的直線a1x+b1y+c1=0和a2x+b2y+c2=0平行的充要條件為a1b2-a2b1=0且a1c2≠a2c1或b1c2≠b2c1;
③兩條直線a1x+b1y+c1=0和a2x+b2y+c2=0垂直的充要條件為a1a2+b1b2=0.判定兩直線平行與垂直的關(guān)系時,如果給出的直線方程中存在字母系數(shù),不僅要考慮斜率存在的情況,還要考慮斜率不存在的情況.
(3)忽視對直線方程中的字母分類討論而丟解或增解
直線方程的截距式+=1中,有ab≠0的限制,而截距可以取正數(shù)、負(fù)數(shù)和零,所以需要對a,b分類討論,否
6、則容易造成丟解.如過點(diǎn)P(2,-1),在x軸,y軸上的截距分別為a,b,且滿足a=3b的直線易漏掉過原點(diǎn)的情形.
變式訓(xùn)練1 (1)“a=3”是“直線ax-2y-1=0與直線6x-4y+c=0平行”的__________條件.( )
A.充要 B.充分而不必要
C.必要而不充分 D.既不充分也不必要
(2)已知圓C過點(diǎn)(1,0),且圓心在x軸的正半軸上,直線l:y=x-1被圓C所截得的弦長為2,則過圓心且與直線l垂直的直線的方程為__________.
熱點(diǎn)二 圓的方程
已知圓C經(jīng)過點(diǎn)A(1,3),B(2,2),并且直線m:3x-2y=0平分圓的面積.求
7、圓C的方程.
規(guī)律方法 圓的方程的求法
求圓的方程一般有兩類方法:(1)幾何法,通過研究圓的性質(zhì)、直線和圓、圓與圓的位置關(guān)系,從而求得圓的基本量和方程;(2)代數(shù)法,用待定系數(shù)法先設(shè)出圓的方程,再由條件求得各系數(shù),從而求得圓的方程一般采用待定系數(shù)法.
特別提醒:圓心到切線的距離等于半徑,該結(jié)論在解題過程中經(jīng)常用到,需牢記.
變式訓(xùn)練2
我們把圓心在一條直線上且相鄰兩圓彼此外切的一組圓叫做“串圓”.在如圖所示的“串圓”中,圓C1和圓C3的方程分別為x2+y2=1和(x-3)2+(y-4)2=1,則圓C2的方程為 .
熱點(diǎn)三 直線與圓的位置關(guān)系
如圖所示,已知以點(diǎn)A
8、(-1,2)為圓心的圓與直線l1:x+2y+7=0相切.過點(diǎn)B(-2,0)的動直線l與圓A相交于M,N兩點(diǎn),Q是MN的中點(diǎn),直線l與l1相交于點(diǎn)P.
(1)求圓A的方程;
(2)當(dāng)|MN|=2時,求直線l的方程;
(3)是否為定值?如果是,求出其定值;如果不是,請說明理由.
規(guī)律方法 (1) 研究直線與圓的位置關(guān)系最基本的解題方法為代數(shù)法,將幾何問題代數(shù)化,利用函數(shù)與方程思想解題.
(2)與弦長有關(guān)的問題常用幾何法,即利用圓的半徑r,圓心到直線的距離d,及半弦長,構(gòu)成直角三角形的三邊,利用其關(guān)系來處理.
變式訓(xùn)練3 已知直線l:2mx-y-8m-3=0和圓C:(x-3)
9、2+(y+6)2=25.
(1)證明:不論m取什么實數(shù),直線l與圓C總相交;
(2)求直線l被圓C截得的線段的最短長度以及此時直線l的方程.
思想滲透
1.?dāng)?shù)形結(jié)合思想
解答與圓有關(guān)的范圍問題時,經(jīng)常以形助數(shù),巧妙破解.
若直線y=x+b與曲線y=3-有公共點(diǎn),則b的取值范圍是( ).
A.[-1,1+2] B.[1-2,1+2]
C.[1-2,3] D.[1-,3]
解析:方程y=x+b表示斜率為1的平行直線系,曲線方程可化為(x-2)2+(y-3)2=4(1≤y≤3)表示圓心為(2,3),半徑為2的下半圓.
如圖所示,當(dāng)直線y=x+b與半圓
10、相切時須滿足圓心(2,3)到直線x-y+b=0的距離等于2,即=2,解得b=1-2或b=1+2(舍).
當(dāng)直線y=x+b過點(diǎn)(0,3)時,可得b=3,由圖可知滿足題意的b的取值范圍為1-2≤b≤3.
答案:C
2.分類討論思想
遇到字母時往往要對其進(jìn)行討論.
試判斷方程x2+y2+4x+2my+8=0表示的曲線類型.
解:將x2+y2+4x+2my+8=0配方,得(x+2)2+(y+m)2=m2-4.
(1)當(dāng)m2-4>0,即m<-2或m>2時,原方程表示以(-2,-m)為圓心,為半徑的圓;
(2)當(dāng)m2-4=0,即m=±2時,原方程表示點(diǎn)(-2,-2)或(-2,2);
11、(3)當(dāng)m2-4<0,即-2
12、4y-4=0,直線l:2x+y=0,則圓C上的點(diǎn)到直線l的距離最大值為( ).
A.1 B.2 C.3 D.4
4.(2012·山東濰坊二模,14)若a,b,c是Rt△ABC的三邊的長(c為斜邊長),則圓C:x2+y2=4被直線l:ax+by+c=0所截得的弦長為__________.
5.(2012·吉林長春實驗中學(xué)二模,14)圓心在直線x-2y-1=0上,且經(jīng)過原點(diǎn)和點(diǎn)(2,1)的圓的方程為__________.
6.(2012·湖北武昌5月模擬,13)在圓x2+y2=4上的點(diǎn),與直線l:4x+3y-12=0的距離的最小值是__________.
7.已
13、知直線l過點(diǎn)P(0,2),斜率為k,圓Q:x2+y2-12x+32=0.
(1)若直線l和圓相切,求直線l的方程;
(2)若直線l和圓交于A,B兩個不同的點(diǎn),問是否存在常數(shù)k,使得與共線?若存在,求出k的值;若不存在,請說明理由.
參考答案
命題調(diào)研·明晰考向
真題試做
1.A 解析:由題意可知圓心坐標(biāo)為(2,0),半徑r=2.因為點(diǎn)P(3,0)到圓心的距離d==1<2,
所以點(diǎn)P在圓內(nèi).故直線l與圓C相交.
2.D 解析:直線與圓相切,
∴=1,
∴|m+n|=,
即:mn=m+n+1,
設(shè)m+n=t,則mn≤2=,
∴t+1≤,∴t2-4t-4≥0,
解得:
14、t≤2-2或t≥2+2.
3.C 解析:直線y=kx+1過定點(diǎn)(0,1),而02+12<2,
所以點(diǎn)(0,1)在圓x2+y2=2內(nèi)部,直線y=kx+1與圓x2+y2=2相交且直線不經(jīng)過圓心,故選C.
4. 解析:圓C的方程可化為(x-4)2+y2=1,直線y=kx-2是過定點(diǎn)(0,-2)的動直線.圓心C到直線y=kx-2的距離d=,要使其滿足已知條件,則需d≤1+1,
即≤1+1,解得0≤k≤.
故k的最大值為.
5.(,) 解析:如圖所示,過P點(diǎn)作圓x2+y2=1的兩條切線,切點(diǎn)分別為A,B,由已知得,∠APO=30°,所以|PO|=2.
設(shè)P點(diǎn)坐標(biāo)為(x0,y0),
則
15、解得
故所求坐標(biāo)為(,).
6. 解析:x2+(y+4)2=2到直線y=x的距離為-=,
所以y=x2+a到y(tǒng)=x的距離為,而與y=x平行且距離為的直線有兩條,分別是y=x+2與y=x-2,而拋物線y=x2+a開口向上,所以y=x2+a與y=x+2相切,可求得a=.
精要例析·聚焦熱點(diǎn)
熱點(diǎn)例析
【例1】 A 解析:設(shè)圓心為C,則AB垂直于CP.
kCP==-1,故直線AB:y+3=x-2,即x-y-5=0,故選A.
【變式訓(xùn)練1】 (1)C 解析:兩條直線平行的充要條件是:=≠,
即故“a=3”是“直線ax-2y-1=0與直線6x-4y+c=0平行”的必要而不充分條件.
16、(2)x+y-3=0 解析:設(shè)圓心坐標(biāo)為(x0,0)(x0>0).
由于圓過點(diǎn)(1,0),則半徑r=|x0-1|,圓心到直線l的距離為d=.
由弦長為2可知2=(x0-1)2-2,整理得(x0-1)2=4.
∴x0-1=±2,∴x0=3或x0=-1(舍去).
因此圓心為(3,0),由此可求得過圓心且與直線y=x-1垂直的直線方程為y=-(x-3),即x+y-3=0.
【例2】 解:由已知得,線段AB的中點(diǎn)E,kAB==-1,故線段AB的中垂線方程為y-=x-,即x-y+1=0.
因為圓C經(jīng)過A,B兩點(diǎn),故圓心在線段AB的中垂線上,
又因為直線m:3x-2y=0平分圓的面積,
所
17、以直線m經(jīng)過圓心.
由
解得即圓心C(2,3).
而圓的半徑r=|CB|==1,
所以圓C的方程為(x-2)2+(y-3)2=1.
【變式訓(xùn)練2】 2+(y-2)2=
解析:易求出C1(0,0),半徑r1=1,
圓心C3(3,4),半徑r3=1.
設(shè)圓C2的圓心坐標(biāo)為C2(a,b),半徑r2,據(jù)題意
即可解出
故圓C2的方程為2+(y-2)2=.
【例3】 解:(1)設(shè)圓A的半徑為R.
∵圓A與直線l1:x+2y+7=0相切,
∴R==2.
∴圓A的方程為(x+1)2+(y-2)2=20.
(2)當(dāng)直線l與x軸垂直時,易知x=-2符合題意;
當(dāng)直線l與x軸不垂直
18、時,設(shè)直線l的方程為y=k(x+2),即kx-y+2k=0.
連接AQ,則AQ⊥MN.
∵|MN|=2,
∴|AQ|==1.
由|AQ|==1,得k=,
∴直線l的方程為3x-4y+6=0.
∴所求直線l的方程為x=-2或3x-4y+6=0.
(3)∵AQ⊥BP,
∴=0,
∴=()·
=.
當(dāng)直線l與x軸垂直時,得P,則=.
又=(1,2),
∴
當(dāng)直線l的斜率存在時,設(shè)直線l的方程為y=k(x+2).
由
解得P,
∴=,
∴=-=-5.
綜上所述,是定值,且=-5.
【變式訓(xùn)練3】 (方法一)(1)證明:設(shè)圓心C到直線l的距離為d,則有d=,
整
19、理可得4(d2-1)m2+12m+d2-9=0,①
為使上面關(guān)于m的方程有實數(shù)解,
則Δ=122-16(d2-1)(d2-9)≥0,解得0≤d≤.
可得d<5,故不論m為何實數(shù),直線l與圓C總相交.
(2)解:由(1)可知0≤d≤,即d的最大值為.
根據(jù)平面幾何知識可知:當(dāng)圓心到直線l的距離最大時,直線l被圓C截得的線段長度最短.
∴當(dāng)d=時,線段(即弦)的最短長度為2=2.
將d=代入①可得m=-,代入直線l的方程得直線被圓C截得最短線段時l的方程為x+3y+5=0.
(方法二)(1)證明:將直線l的方程變形有:m(2x-8)-y-3=0,
解得知直線l過定點(diǎn)A(4,-3)
20、.
又∵(4-3)2+(-3+6)2<25,
∴A點(diǎn)在圓C內(nèi)部,因此直線l與圓C總相交.
(2)同方法一.
創(chuàng)新模擬·預(yù)測演練
1.A 解析:直線y=x+2與圓(x-a)2+(y-b)2=2相切?圓心(a,b)到直線y=x+2的距離d=r,即=,|a-b+2|=2.解得a-b=0或a-b=-4,故選A.
2.B 解析:由圓心在直線x+y=0上,不妨設(shè)為C(a,-a),
∴r==,
解得a=1,r=,
∴圓C的方程為(x-1)2+(y+1)2=2.
3.C 解析:可利用數(shù)形結(jié)合法進(jìn)行分析解決.
4.2
5.2+2=
解析:設(shè)所求圓的方程為(x-a)2+(y-b)2=r2
21、,
由題設(shè)可得
解此方程組,得
所以所求圓的方程為2+2=.
6. 解析:圓的半徑是2,圓心O(0,0)到l:4x+3y-12=0的距離d==,所以圓x2+y2=4上的點(diǎn)與直線l:4x+3y-12=0的距離的最小值是-2=.
7.解:(1)將圓的方程化簡,得(x-6)2+y2=4.圓心Q(6,0),半徑r=2.
直線l的方程為:y=kx+2,
故圓心到直線l的距離d==,因為直線l和圓相切,故d=r,即=2,解得k=0或k=-,所以,直線l的方程為y=2或3x+4y-8=0.
(2)將直線l的方程和圓的方程聯(lián)立得
消y得(1+k2)x2+4(k-3)x+36=0,
因為直線l和圓相交,故Δ=[4(k-3)]2-4×36×(1+k2)>0,解得-