2013年高中數(shù)學(xué) 暑期特獻(xiàn) 重要知識點(diǎn) 連續(xù)函數(shù)的性質(zhì)及初等函數(shù)的連續(xù)性

上傳人:wu****ei 文檔編號:147508973 上傳時間:2022-09-02 格式:DOC 頁數(shù):2 大?。?5KB
收藏 版權(quán)申訴 舉報 下載
2013年高中數(shù)學(xué) 暑期特獻(xiàn) 重要知識點(diǎn) 連續(xù)函數(shù)的性質(zhì)及初等函數(shù)的連續(xù)性_第1頁
第1頁 / 共2頁
2013年高中數(shù)學(xué) 暑期特獻(xiàn) 重要知識點(diǎn) 連續(xù)函數(shù)的性質(zhì)及初等函數(shù)的連續(xù)性_第2頁
第2頁 / 共2頁

最后一頁預(yù)覽完了!喜歡就下載吧,查找使用更方便

9.9 積分

下載資源

資源描述:

《2013年高中數(shù)學(xué) 暑期特獻(xiàn) 重要知識點(diǎn) 連續(xù)函數(shù)的性質(zhì)及初等函數(shù)的連續(xù)性》由會員分享,可在線閱讀,更多相關(guān)《2013年高中數(shù)學(xué) 暑期特獻(xiàn) 重要知識點(diǎn) 連續(xù)函數(shù)的性質(zhì)及初等函數(shù)的連續(xù)性(2頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、連續(xù)函數(shù)的性質(zhì)及初等函數(shù)的連續(xù)性 連續(xù)函數(shù)的性質(zhì) 函數(shù)的和、積、商的連續(xù)性 我們通過函數(shù)在某點(diǎn)連續(xù)的定義和極限的四則運(yùn)算法則,可得出以下結(jié)論: a):有限個在某點(diǎn)連續(xù)的函數(shù)的和是一個在該點(diǎn)連續(xù)的函數(shù); b):有限個在某點(diǎn)連續(xù)的函數(shù)的乘積是一個在該點(diǎn)連續(xù)的函數(shù); c):兩個在某點(diǎn)連續(xù)的函數(shù)的商是一個在該點(diǎn)連續(xù)的函數(shù)(分母在該點(diǎn)不為零); 反函數(shù)的連續(xù)性 若函數(shù)在某區(qū)間上單調(diào)增(或單調(diào)減)且連續(xù),那末它的反函數(shù)也在對應(yīng)的區(qū)間上單調(diào)增(單調(diào)減)且連續(xù) 例:函數(shù)在閉區(qū)間上單調(diào)增且連續(xù),故它的反函數(shù)在閉區(qū)間[-1,1]上也是單調(diào)增且連續(xù)的。 復(fù)合函數(shù)的連續(xù)性 設(shè)函數(shù)當(dāng)x→x0時的極

2、限存在且等于a,即:.而函數(shù)在點(diǎn)u=a連續(xù),那末復(fù)合函數(shù)當(dāng)x→x0時的極限也存在且等于.即: 例題:求 解答: 注:函數(shù)可看作與復(fù)合而成,且函數(shù)在點(diǎn)u=e連續(xù),因此可得出上述結(jié)論。 設(shè)函數(shù)在點(diǎn)x=x0連續(xù),且,而函數(shù)在點(diǎn)u=u0連續(xù),那末復(fù)合函數(shù)在點(diǎn)x=x0也是連續(xù)的 初等函數(shù)的連續(xù)性 通過前面我們所學(xué)的概念和性質(zhì),我們可得出以下結(jié)論:基本初等函數(shù)在它們的定義域內(nèi)都是連續(xù)的;一切初等函數(shù)在其定義域內(nèi)也都是連續(xù)的. 閉區(qū)間上連續(xù)函數(shù)的性質(zhì) 閉區(qū)間上的連續(xù)函數(shù)則是在其連續(xù)區(qū)間的左端點(diǎn)右連續(xù),右端點(diǎn)左連續(xù).對于閉區(qū)間上的連續(xù)函數(shù)有幾條重要的性質(zhì),下面我們來學(xué)習(xí)一下: 最大值最小值定理:在閉區(qū)間上連續(xù)的函數(shù)一定有最大值和最小值。(在此不作證明) ?? 例:函數(shù)y=sinx在閉區(qū)間[0,2π]上連續(xù),則在點(diǎn)x=π/2處,它的函數(shù)值為1,且大于閉區(qū)間[0,2π]上其它各點(diǎn)出的函數(shù)值;則在點(diǎn)x=3π/2處,它的函數(shù)值為-1,且小于閉區(qū)間[0,2π]上其它各點(diǎn)出的函數(shù)值。 介值定理????在閉區(qū)間上連續(xù)的函數(shù)一定取得介于區(qū)間兩端點(diǎn)的函數(shù)值間的任何值。即:,μ在α、β之間,則在[a,b]間一定有一個ξ,使 ????? 推論:?在閉區(qū)間連續(xù)的函數(shù)必取得介于最大值最小值之間的任何值。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!